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Motivation

Coincident Peak Charging

An electrical customer’s
coincident peak (CP) is
their demand at the
moment of the entire
system’s peak

Systems levy transmission
surcharges via CP
electrical rates to reduce
system peaks.

Figure 1: Example CP
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Motivation

How do CP charges work?

1. CP rate roughly 100x
more than normal
time-of-use rates

2. A consumer’s CP is
recorded on a
monthly basis

3. At the end of the
year, CP charges are
paid

Consumers participate in
exchange for discounted
time-of-use rates at all
other times.

Figure 2: Example of idealized system
response to CP charges
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Motivation

Motivation

4 MW consumer paying
average ERCOT wholesale
prices ($40/MWh),
roughly $1.4 million in
electricity costs per
working year, $300k of
which per year to consume
electricity at CP hour
Consumers are incentivized
to curtail demand during
the moment of the CP.

Figure 3: Example of a consumer’s CP
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Motivation

Current Solutions

Operators broadcast signals, e.g.
Fort Collins PUD:

I Sends out signals about 10
days out of month

I Signals come with less than
one hour lead time

I Customers know when CP’s
should occur, e.g. afternoon

Too many signals, still hard to
predict rare events

Distributors and Large Consumers
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Motivation

Contribution

1. Cast the CP prediction problem in the context of an
optimization program a consumer can evaluate

2. Treat the CP occurence as a random variable

3. Design a context-aware loss function for training predictors in
this regime
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Model

Optimization Problem

Let g be a concave/differentiable utility function of hourly power
consumption pt , πcp the CP rate: we have the following
optimization program:

maximize
pt

g(pt)− πcppt · 1 [t is CP]

subject to pt ≤ pmax

pt ≥ 0

(P1)
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Model

CP as Random Variable

Instead of predicting binary
sequences for moment that
is/isn’t a rare CP, we can instead
treat the system load as a
continuous RV try to predict the
CDF

Figure 4: Emprical CDF of 2017
ERCOT hourly system load
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Model

Optimization Problem Relaxation

Now we can replace the indicator function with a probabilistic
expression we can more effectively predict and take advantage of
via thresholding:

maximize
pt

g(pt)− πcppt · 1 [CDF (pt) ≥ α] (1a)

subject to pt ≤ pmax (1b)

pt ≥ 0 (1c)



Forecasting Coincident Peaks with a Feed-Forward Neural Network

Model

Optimization Problem Relaxation

If the predicting CDF value is
greater than some threshold α,
then the CP cost factors into the
optimization program.

Figure 5: CP cost as a function of
the predicted CDF value for various
values of α
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Model

Optimization Problem Relaxation

This is still too stringent, so we
relax curtailment severity and
“hedge” our bet the upcoming
demand-hour is a CP, curtailing
more the larger the predicted
CDF value is.

Figure 6: Hedged CP cost as a
function of the predicted CDF value
for various values of α
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Model

Predicting the CDF

We know weather is a major factor.

But we care about a large number of features that will influence
small differences at the extremes.

NN’s are good at incorporating a large number of features. We
highlight that a simple, linear NN can identify and exploit such
features for the purpose of more accurately predicting the timing of
the system peak. The model is learning something.

2017 is an interesting test year: ERCOT peak loads were roughly
4,000 MW less than predicted values that hour-ahead forecasts
would be benchmarked against.



Forecasting Coincident Peaks with a Feed-Forward Neural Network

Model

Predicting the CDF

We know weather is a major factor.

But we care about a large number of features that will influence
small differences at the extremes.

NN’s are good at incorporating a large number of features. We
highlight that a simple, linear NN can identify and exploit such
features for the purpose of more accurately predicting the timing of
the system peak. The model is learning something.

2017 is an interesting test year: ERCOT peak loads were roughly
4,000 MW less than predicted values that hour-ahead forecasts
would be benchmarked against.



Forecasting Coincident Peaks with a Feed-Forward Neural Network

Model

Predicting the CDF

We know weather is a major factor.

But we care about a large number of features that will influence
small differences at the extremes.

NN’s are good at incorporating a large number of features. We
highlight that a simple, linear NN can identify and exploit such
features for the purpose of more accurately predicting the timing of
the system peak. The model is learning something.

2017 is an interesting test year: ERCOT peak loads were roughly
4,000 MW less than predicted values that hour-ahead forecasts
would be benchmarked against.



Forecasting Coincident Peaks with a Feed-Forward Neural Network

Model

Predicting the CDF

We know weather is a major factor.

But we care about a large number of features that will influence
small differences at the extremes.

NN’s are good at incorporating a large number of features. We
highlight that a simple, linear NN can identify and exploit such
features for the purpose of more accurately predicting the timing of
the system peak. The model is learning something.

2017 is an interesting test year: ERCOT peak loads were roughly
4,000 MW less than predicted values that hour-ahead forecasts
would be benchmarked against.



Forecasting Coincident Peaks with a Feed-Forward Neural Network

Model

Predicting the CDF

We want to promote prediction accuracy for larger values of the
CDF, between [α, 1], so we design a weighted average L1 loss

Lβ :=
1

|{P}|
∑

xt∈{X}

[
βF (St)|F (St)− F̂ (St)|

]
(2)

With this loss function we can frontload a NN with feature data to
predict the CDF, and test the effectiveness of the predicted CDF in
our consumer’s optimization program.
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Data

ERCOT Load Data

Figure 7: Map of ERCOT region and
major metropolitan areas

Figure 8: Historical ERCOT system
load data 2017
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Data

Weather Data

I Hourly data from 2010-2017
retrieved from Dark Sky API

I Polled 19 largest cities

I Feature rich: temperature,
humidity, precipitation, wind
velocity, barometric
pressure, cloud cover, etc.

Source: NOAA
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Data

Feature Engineering

We incorporate on a per-zone basis load features to account for
potential congestion affects, and the non-uniform influence of
weather across Texas. For example:

I Day of month, week, year, time of day, season

I ERCOT demand by zone

I Average, max, and variance of electrical demands observed
thus far in the CP measurement period

I Average, max, and variance of temperature, humidity, and
wind speeds observed thus far
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Results

Loss Function

Identical networks trained with
standard average L1 loss and
weighted L1 loss

Average L1 loss on test
data—post training—for large
values of α strictly improved

Figure 9: Comparison of avg. L1 and
weighted avg. L1, β = 10
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Results

CP Identification Results

Make the problem harder by identifying top 10 loads annually. Use
historical average model based on how Fort Collins PUD
broadcasts expected CP time ranges.

Figure 10: Binary Precision Figure 11: Binary Recall
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Results

Model Business Optimization Results

500 MW toy business, 10 CP
charges over the entire year. Unit
utility per MW during regular
business hours, CP charge
approx. 40% of annual utility.

1. 24 hour ahead NN prediction
(97.4% of perfect)

2. Historical average CDF
(94.4% of perfect)

Utility maximized for for 2 and 3
at α = 0.975

Figure 12: Comparison of CP
curtailment strategies
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Conclusion

Concluding Remarks

For small consumers, hedged CP curtailment can save considerable
CP costs.

Simple predictor learns something over historical empirical CDF

Large consumers might change timing of system CP if they curtail
enough. Interesting game theory problem.
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