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ECG Telemonitoring with

Edge Computing
“* Mobile Telemedicine with Wireless Body Area
Network (WBAN) [1]

«* Patient-centered health-care
“*Ubiquitous health-care

“* ECG Telemonitoring [2], [3]
“*Record the electrical activity of the heart
+» Standard practice in hospitals for diagnoses

“*» Edge Computing [4]
**bandwidth cost saving
“*battery life constraint
“*latency requirement
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Edge Computing
under Existing loT Systems
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Compressed Sensing

for ECG Telemonitoring

“* Problems of Digital Wavelet Transform (DWT)
“*High bandwidth incompatible to ADC (Nyquist sample rate)
“*High Computational Complexity (Compression)
Bandwidth Complexity

Nyquist DWT 7) (« -
J'\,A(_/L Sampling Compress y Z Decompress ' :

“* Compressed sensing (CS) combines sampling and compressing
“*Reduce cost and latency in sampling
++* CS-based sensors achieves a 37% node lifetime extension [2]

37% node
lifetime extension
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Compressed Analysis
for ECG Telemonitoring

“* Reconstructed Analysis (RA)
“*High computational complexity because of CS reconstruction algorithms

“*Inappropriate at edge devices. AF: Atrial Fibrillation
High
Complexity | Reconstructed Analysis

' .)))(((.
. A . 7 CS Y Z%econstruction—’Classification — AF / Normal

Cloud

“» Compressed Analysis (CA)
“*Reduce power (classification on compressed signals), suitable at edge devices
<*Reduce the bandwidth requirement (only transmitting AF signals)
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Naive CA (CA-N)

“* Combining CS with Task-Driven Dictionary Learning (TDDL)
*What is TDDL [5]
» Learning a dictionary (D) to provide predictive sparse coding («) at given data set
» Learning a classifier (W) to classify by the sparse coding «

“*Why we choose TDDL?
»Low Complexity - Overcome battery constraint and bandwidth scarcity
» High Generalization - Limited label of ECG dataset

*** The on-line inference mode of CA-N
D and W learned on original data (X)

“*Accuracy degrades, needing double parameters to reach same performance
on original data Accuracy
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Contribution of Proposed Scheme (1/2)

*» Low-Complexity (overcame battery and bandwidth requirement)

“*Our proposed Eigenspace-aided Compressed Analysis (CA-E) vs
Naive Compressed Analysis (CA-N)

Model # Parameters | Training Time (s) | Inference Time (ms) | Accuracy (%)

CA-N 13k 452.56 26.94 89.24 + 0.520

CAE 4.25k 107.15 3.50 90.05 + 0.256
(Our proposed)

“*Reduce about 67% parameters (Memory l)
**Reduce about 87% inference time (Power l)
“*Reduce about 76% training time (Power |)
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Contribution of Proposed Scheme (2/2)

*» High-Stability

** CA-E outperforms DNN and SVM by over 10% when the amount of data is
halved. (Overcame limited label of ECG dataset)

** CA-E reaches about 90% under all compressed ratio (Stable under all
compressed ratio)
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Eigenspace-Aided CA (Training)

L : N DIk — 2
< Principal Component Analysis (PCA) min— ) > lIxi — Dall; + Alall,
i
“*Record mean vector (n) of dataset (X) lm
< Learn eigenspace (¥ € RV*") of X minlz 1 (y;, W)
< Transpose to eigenspace by T = $T(X- p) wome
m
1 14
min— ) L(y;, W, ap) + = [|W]|%
< TDDLtolearnD and Won T W, m; s T O g

s+ Stage I. Initialize
» Dictionary: online dictionary learning (ODL) [6]

t7'><1 Drxd

Aax1

»Weight: square / logistic loss Wod Vox1
s Stage Il. Co-optimize D and W with labels = o
» Alternates between A and D,W A
» Update dictionary with back propagation rule Two-layer
“* Sparse coding plays an important role in both stage. Hypothesis

1
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Eigenspace-Aided CA (Inference)

“* Eigenspace Transform
“*Compressed sensing signal is transmitted with known sensing matrix (®),
the decoding data is obtained by
s= (PP)"R—Pp) = 07X —Pp)
< ( )*: pseudo-inverse
“* The decoding vector (s) then pass through TDDL-based classifier
“*Get sparse coding a(s,D) — 1
< Simple linear classifier W — % = azg;,?gnf Ix = Dedlz + Allelly
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Scheme Development (1/2)
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Scheme Development (2/2)

“» Compressed Analysis

Analysis
Edge Devices ’ Cloud
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Simulation Results (1/3)
Different Dictionary Siz

100 T T

“* Accuracy vs Dictionary Size os |

“*To surpass DNN & SVM (~85%), CA-E 0f
needs 30 atoms, but CA-N needs 60 atoms. o :

«»*Under same number of atoms, CA-E
outperforms CA-N by about 7%.

% CA-E-50 vs. CA-N-100

Accuracy (%)

SVM
DNN
—i— CA-E | 7

—@— CA-N
“*Reduce about 67% parameters (Memory l) e
20 30 40 S0 60 70 80 90 100
“*Reduce about 87% inference time (Power ) Phumber.of atame)(4)
“*Reduce about 76% training time (Power )
Model # Parameters | Training Time (s) | Inference Time (ms) | Accuracy (%)
CA-N (100) 13k 452.56 26.94 89.24 + 0.520
CA-E (50) 4.25k 107.15 3.50 90.05 + 0.256
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Simulation Results (2/3)
Different Data Set Size

“* CA-E i1s more immune to limited data challenge (ex. N,- < 0.5)
“+*SVM and DNN dramatically drops below 80%
“ CA still maintain the performance

“* CA-E outperforms CA-N in 7% margin when the number of atoms is the same.
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Simulation Results (3/3)
Different Compressed Ratio

“» CA-E can achieve about 90% accuracy under all compressed ratios
“*CA-N requires 100 atoms to achieve same level of performance
“*SVM and DNN have only about 80%

“* CA-E is robust and address the entailed problems of variation of
compressratio i
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Conclusion

“* We propose an eigenspace-aided compressed analysis for ECG
telemonitoring, using

“*PCA to mitigate the influence of sensing matrix and reduce the dimension
“+*TDDL to learn predictive sparse coding at eigenspace.

“* The proposed eigenspace-aided compressed analysis achieves
“*Low complexity
“*High generalization
“*High stability of different compressed ratios
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Experimental Setting

*» ECG signals were recorded from the intensive care unit (ICU) of stroke
In National Taiwan University Hospital (NTUH)

231 normal records and 58 AF records (labeled by doctors)

@ Sample Frequency: 512 Hz TABLE I: Parameters setting for learning models
“*Each record randomly sample 2250 seconds CAE and CA-N
L ¢1-Constraint (A1) [0.2, 0.5, 0.8]
» 1250 for training Regularization (1) [10-5, 10— 2]
. SVM
»1000 for teStlng Kernel Radial Basis Function
. Gamma () [0.08, 0.10, 0.12, 0.15, 0.2]
“ CS setting Cost (O) [500, 800, 1000]
. . . . DNN
*» Entries of sensing matrix: Bernoulli (0.5) [(16.32), (32.60). (64.128),
. . . Hidden Layer Dimension (128,256), (8,16,32),
** Simulation Environment (16,32,64), (32,64,128) |

**Measured on Intel i5-4200M CPU @ 2.5 GHz
“*Using Python3
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Analysis of CA-N

**We need to increase the number of atoms in dictionary to compensate
the performance degrade
X ® [ E=®D 1

i o Normal
; ’\ . 2 CS ! Dictionary Classifier <
¥ | AF

Edge Devices

O

*» Figures below also present the sparse codings in original domain as
comparison group.
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Comparison of CA-E and CA-N

*** CA-E-50 vs. CA-N-100
“*Reduce about 67% parameters
“*Reduce about 76% training time,

+*Reduce about 87% inference time

<*Smaller performance variance |
“* The bottleneck of training and inference time lies in FISTA

Far smaller classifier with faster

training and inference time

Training Time (S)

Inference Time (ms)

Model # Parameters Accuracy (%)
Total FISTA Total FISTA # Iter 1 Iter
CA-N MXxd+dXxN, 89.24
(d=100) (13K) 452.56 | 306.33 26.94 26.94 35.5 0.759 +0.520
CA-E rxd+dxN, 90.05
(d=50) (4.25K) 107.15 61.59 3.50 3.49 15.2 0.229 + 0.256

M =128, r =83 and N, = 0.6
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Detailed Timing Analysis

“* The bottleneck in FISTA is V, f operation
#Vof =V, 5 lIx—Dall = D"Da — D™x - 0(d?)

“*Above order matches the following table

“* CA-E accelerates FISTA by
% Cut off the complexity of each iteration
**Reducing the number of iteration

1)

)
r

04 F

Normalized Cost Function
fo

o

e CA-E (d=50)
e CA-N (d=100)

10

20 30

Iteration

Model Training Time (S) Inference Time (ms)
ode

Total FISTA Total FISTA # Iter 1 Iter
CA-N
(d=100) 452.56 | 306.33 | 26.94 26.94 35.5 0.759
CA-E
(d=50) 107.15 | 61.59 3.50 3.49 15.2 0.229
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