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OVERVIEW

Graph-based modeling: learn complex dynamics
Exploiting intrinsic sparsity of direct interactions

Social networks Biology - Ecology Industrial processes

Interactions in many real-world applications are not stationary

Learning a time-varying VAR [1] model from data enables:

• Time-series forecasting, denoising, data completion, compression

• Parsimonious, human-readable models

• Unveiling behavioral patterns and changes

• Direct (unmediated) 6= indirect (mediated) influence

Inferring nonstationary interaction model↔ unveiling time-varying causality net (graph)

NOTATION

yi,t Value of time series in i-th node at time t

yt := [y1,t, y2,t, . . . , yP,t]
> Vector at time t

εi,t Innovation (process noise)
P Number of nodes
L Order of the VAR process
T Time series duration
Et Edge set at time t

a
(`)
ij,t VAR coefficient for edge j → i, lag `, at time t

A
(`)
t Matrix of VAR coefficients for lag ` at time t

aij,t LTV filter coefficients at edge j → i at time t

CONTRIBUTION IN CONTEXT

Graph-based 

inference

VAR processes

(memory)

Time varying (non-stationary)

– Time-varying graphical

models [Hallac2017]

– Time-varying SEM 

[Shen, 2017] [Baingana,2017]

Our Contribution:
Detection of local 

structural breakpoints

– Locally stationary VAR 

(smooth changes)

– Switching VAR (Markov) 

[Fox,2008]

– Piecewise-stationary VAR 

(Structural breakpoints)

[Tank, 2017]

– VAR models                          

[Bolstad, 2011],[Mei, 2017]

– Structural VAR [Shen, 2016]

– Online SVAR [Shen, 2018] 

– Online VAR estimation [Zaman, 2017]

(slow changes - no breakpoint detection)

• Inference of time-varying models accounting for

– memory (VAR coefficients)

– network structure (few active edges)

• Detection of local structural breakpoints

– changes at individual edges

– changes in coefficients are not synchronized across edges

– Previous works assume that changes at all nodes are aligned
in time

• Low-complexity solver

• Data windowing (optional) to reduce computation

• Scheme to choose regularization parameters

TIME-VARYING VAR↔ TIME-VARYING GRAPH
L-th order TVAR model [1, Ch. 1]:

yt =
L∑
`=1

A
(`)
t yt−` + εt (1)

yi,t =
P∑
j=1

[yj,t−1, yj,t−2, . . . , yj,t−L] aij,t + εi,t (2)

aij,t := [a
(1)
ij,t, a

(2)
ij,t, . . . , a

(L)
ij,t]
> coefficients of a linear time-varying (LTV) filter
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Graph associated with a time-invariant (stationary) VAR process [2]
Generalization to time-varying VAR models

• One time series per node i

• Time-varying edge set Et := {(i, j) ∈ V × V : aij,t 6= 0}

GLOBAL AND LOCAL BREAKPOINTS
Previous works [9, 10, 11] enforce group-sparse first difference
Structural breakpoint set T := {t : A

(`)
t 6= A

(`)
t−1for some `}

For instance, [10] computes

min
{A(`)

t }

T∑
t=L+1

∥∥∥∥∥yt −
L∑
`=1

A
(`)
t yt−`

∥∥∥∥∥
2

2

+ γ
T∑

t=L+2

√∑
(i,j)

‖aij,t − aij,t−1‖2 (3)

However, in some real applications (e.g. industrial processes):

• Links (local interaction patterns) change, but only a few at a time

• Local breakpoint set: Ti,j := {t : aij,t 6= aij,t−1}

Proposed estimation criterion:

min
{A(`)

t }

T∑
t=L+1

∥∥∥∥∥yt −
L∑
`=1

A
(`)
t yt−`

∥∥∥∥∥
2

2

(4)

+
∑
(i,j)

(
λ

T∑
t=L+1

‖aij,t‖2 + γ
T∑

t=L+2

‖aij,t − aij,t−1‖2

)

Enables spatial location of change events

EMPIRICAL VALIDATION

• P = 10 nodes, 21 active edges (nonzero coefficients)

• Initial VAR coefficients ∼ N (0, 1), scaled to ensure stability

• Local breakpoints generated at uniformly spaced instants, edges chosen uniformly
at random

• LTV coefficients redefined at each breakpoint:

– with probability p=0.4, back to 0

– otherwise, generated from ∼ N (0, 1), and scaled again to ensure stability

True coefficients
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VISUALIZING TVAR PROCESSES

Index of
(potential) edge

White = no edge
(impulse resp. = 0)

Intense colors = 
high-gain impulse response
(norm of coefs is large)

Light colors = 
low-gain impulse response
(norm of coefs is small)

Lag index

>>stem( impulse_response(edge, time) )

Local breakpoints Global breakpoint

Colors = different impulse
response waveforms

PROBLEM DEFINITION

Goal: to estimate coefficients {{A(`)
t }L`=1}Tt=L+1 given {yt}Tt=1

• (T − L)P 2L unknowns, PL samples

• Exploit sparse spatial structure (few active edges)

• Exploit spatio-temporal locality of changes (local breakpoints)

SOLUTION VIA ADMM

arg min
B,Θ,C

1

2
‖Y − ZB‖2F + λΩGL(Θ) + γΩGL(C),

s.to DB = Θ, B = C (5)

where: B stacks all A(t)
` ,

Z and Y stacks all y (regressors and targets, resp.)

D :=



−I I 0 . . . 0

0 −I I

.

.

.
.
.
.

. . .
. . .

. . .
0 . . . −I I

 ,

ΩGL(B) =
∑

(i,j)

∑T
t=L+1 ‖aij,t‖2

ΩGTV (B) =
∑

(i,j)

∑T
t=L+1 ‖aij,t+1 − aij,t‖2 = ΩGL(DB)

For each iteration k:

B[k+1] :=
(
Z>Z/ρ+ I + D>D

)†
(6)(

Z>Y/ρ+ C[k] −V[k] + D>(Θ[k] −U[k])
)

θ
[k+1]
ij,t := proxλ/ρ‖·‖2(b

[k+1]
ij,t − b

[k+1]
ij,t−1 + u

[k+1]
ij,t−1) (7)

c
[k+1]
ij,t := proxλ/ρ‖·‖2(b

[k+1]
ij,t + v

[k+1]
ij,t ) (8)

U[k+1] := U[k] + (DB[k+1] −Θ[k+1]) (9)

V[k+1] := V[k] + (B[k+1] −C[k+1]) (10)

ONLINE METHODS

• Approximate estimation of VAR parameters

• Diminishing stepsize -> Asymptotic convergence for stationary VAR

• Constant stepsize -> Lightweight heuristic for tracking TVAR

• Two novel algorithms [12] (submitted to TSP)

• TISO ≈ group-sparse LMS

• TIRSO ≈ group-sparse RLS

REFERENCES

[1] H. Lütkepohl, New Introduction to Multiple Time Series Analysis.
Springer, 2005.

[2] A. Bolstad, B. D. V. Veen, and R. Nowak, “Causal netwk in-
ference group sparse regularization,” IEEE Trans. Sig. Process.,
vol. 59, no. 6, pp. 2628–2641, 2011.

[3] J. Mei and J. M. Moura, “Signal processing on graphs: Causal
modeling of unstructured data.” IEEE Trans. Sig. Process.,
vol. 65, no. 8, pp. 2077–2092, 2017.

[4] Y. Shen, B. Baingana, and G. B. Giannakis, “Nonlinear struc-
tural vector autoregressive models for inferring effective
brain network connectivity,” arXiv preprint arXiv:1610.06551,
2016.

[5] D. Hallac, Y. Park, S. Boyd, and J. Leskovec, “Network infer-
ence via the time-varying graphical lasso,” in Proc. 23rd Intl.
Conf. Knowledge Discovery, Data Mining. ACM, 2017, pp. 205–
213.

[6] Y. Shen, B. Baingana, and G. B. Giannakis, “Tensor decompo-
sitions for identifying directed graph topologies and tracking
dynamic networks,” IEEE Trans. Sig. Process., vol. 65, no. 14,
pp. 3675–3687, 2017.

[7] B. Baingana and G. B. Giannakis, “Tracking switched dynamic
network topologies from information cascades,” IEEE Trans.
Sig. Process., vol. 65, no. 4, pp. 985–997, 2017.

[8] E. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky,
“Bayesian nonparametric inference of switching dynamic lin-
ear models,” IEEE Trans. Sig. Process., vol. 59, no. 4, pp. 1569–
1585, Apr. 2011.

[9] A. Safikhani and A. Shojaie, “Structural break detection in
high-dimensional non-stationary var models,” arXiv preprint
arXiv:1708.02736, 2017.

[10] A. Tank, E. B. Fox, and A. Shojaie, “An efficient admm algo-
rithm for structural break detection in multivariate time se-
ries,” arXiv preprint arXiv:1711.08392, 2017.

[11] H. Cho et al., “Change-point detection in panel data via dou-
ble cusum statistic,” Electronic J.of Statistics, vol. 10, no. 2, pp.
2000–2038, 2016.

[12] B. Zaman, L. M. Lopez-Ramos, D. Romero, and B. Beferull-
Lozano, “Online estimation of sparse topologies from vector
autoregressive time-series,” Submitted to IEEE Trans. on Sig.
Process.

luisml
Text Box
The work in this paper was supported by the SFI Offshore Mechatronics grant 237896/O30.




