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Motivation

• Infer missing values?

• ML: Matrix completion
low rank

• SSP: Gold standard:
statistical inference
but ... joint distribution?
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Joint PMF estimation

•Without structural assumptions, joint PMF estimation is mission
impossible (10 variables, 10 values each → 1010 parameters).

• Generic way to control joint PMF complexity?

• Is it possible to discover the underlying structure?

• Joint PMF recovery by observing subsets of variables? Possible?

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union



4/43

Sneak preview

We will see that:

• Full joint PMF can be provably recovered from third-order
marginal PMFs ...

• ... provided joint PMF rank is not too large (RVs are reasonably
(in)dependent).

Kolmogorov extension:

• Consistent specification of finite-dimensional distributions
implies unique ∞-dim measure;
• Specification of third-order distributions implies unique
higher-order, under rank condition (our result)
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Joint PMF from marginals (‘projections’)?

+
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Graphical models? — Structure?

Z

YX

X ZY

Pr𝑋,𝑌,𝑍 𝑖, 𝑗, 𝑘 = Pr𝑋,𝑌|𝑍 𝑖, 𝑗 𝑘 Pr𝑍 𝑘

= Pr𝑋|𝑍 𝑖 𝑘 Pr𝑌|𝑍 𝑗 𝑘 Pr𝑍 𝑘

=
Pr𝑋,𝑍 𝑖, 𝑘 Pr𝑌,𝑍 𝑗, 𝑘

Pr𝑍 𝑘
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= Pr𝑍|𝑌 𝑘 𝑗 Pr𝑋,𝑌 𝑖, 𝑗 =
Pr𝑍,𝑌 𝑘, 𝑗

Pr𝑌 𝑗
Pr𝑋,𝑌 𝑖, 𝑗

=
Pr𝑍,𝑌 𝑘, 𝑗 Pr𝑋,𝑌 𝑖, 𝑗

σ𝑧 Pr𝑍,𝑌 𝑘, 𝑗
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Linear vs. statistical (in)dependence

𝐷 ≔ ෍

𝑖,𝑗

Pr𝑋,𝑌(𝑖, 𝑗) ln
൯Pr𝑋,𝑌(𝑖, 𝑗

)Pr𝑋(𝑖)Pr𝑌(𝑗
Most commonly used measure of Dependence:

R=1 statistically independent
R=2 can model strong statistical dependence, yields 50% of D of fully dependent case
R=4 maximal statistical dependence
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independent

R=2

D=ln(2)

partial statistical

dependence

R=4

D=ln(4)

Complete statistical 

dependence
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𝟏

𝟖
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𝟒
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Canonical Polyadic Decomposition (CPD)

N -way tensor (multi-way array) X ∈ RI1×I2×···×IN admits a CPD
of rank F if it can be decomposed as a sum of F rank-1 tensors.

X =

F∑
f=1

λ(f)A1(:, f) ◦A2(:, f) ◦ · · · ◦AN (:, f)

F is the smallest number for which such a decomposition exists.
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Canonical Polyadic Decomposition (CPD)

Different ways of writing a CPD model X = [[λ,A1, . . . ,AN ]]

Element-wise

X(i1, . . . , iN ) =

F∑
f=1

λ(f)

N∏
n=1

An(in, f)

Matrix (unfolding)

X(n) = (AN � · · · �An+1 �An−1 � · · · �A1)diag(λ)AT
n

Vector
vec(X) = (AN � · · · �A1)λ
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Link between naive Bayes model and CPD

Assume that {Xn}Nn=1 are conditionally independent given a variable H
that takes F distinct values.

Pr(X1 = i1, . . . , XN = iN ) =

F∑
f=1

Pr(H = f)

N∏
n=1

Pr(Xn = in|H = f).

A special non-negative polyadic
decomposition X = [[λ,A1, . . . ,AN ]]
with

λ(f) = Pr(H = f),

An(in, f) = Pr(Xn = in|H = f),

where 1Tλ = 1, 1TAn = 1T . Naive Bayes Model.
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Link between naive Bayes model and CPD

Proposition 1 (Kargas & Sidiropoulos, 2017)

Every joint PMF can be written as

Pr(X1 = i1, . . . , XN = iN ) =

F∑
f=1

Pr(H = f)

N∏
n=1

Pr(Xn = in|H = f)

with F ≤ min
k

(
∏N
n=1
n 6=k

In)

→ Every joint PMF can be represented by a naive Bayes model with a
bounded number of latent states.
→ Even when there is no physically meaningful H.

We naturally prefer F � min
k

(
∏N
n=1
n 6=k

In)

Reasonable in practice: random variables are not fully dependent.
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Uniqueness of CPD

Definition 1 (Essential uniqueness)

For a tensor X of rank F , we say that a decomposition
X = [[A1, . . . ,AN ]] is essentially unique if the factors are unique up to a
common permutation and scaling / counter-scaling of columns.

This means that if there exists another decomposition
X = [[Â1, . . . , ÂN ]], then, there exists a permutation matrix Π and and
diagonal scaling matrices Λn such that

Ân = AnΠΛn and

N∏
n=1

Λn = I.

There is no scaling ambiguity for the nonnegative column-normalized
representation X = [[λ,A1, . . . ,AN ]].
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Uniqueness of CPD

Let X = [[A1,A2,A3]], where A1 ∈ RI1×F , A2 ∈ RI2×F , A3 ∈ RI3×F
with I1 ≤ I2 ≤ I3.

Theorem 1 (Chiantini & Ottaviani 2012)

If min(I1, I2) ≥ 3 and F ≤ I3, then, rank(X) = F and the decomposition
of X is essentially unique, almost surely, if and only if
F ≤ (I1 − 1)(I2 − 1).

Theorem 2 (Chiantini & Ottaviani 2012)

Let α, β be the largest integers such that 2α ≤ I1 and 2β ≤ I2. If
F ≤ 2α+β−2 then the decomposition of X is essentially unique almost

surely. The condition also implies that if F ≤ (I1+1)(I2+1)
16 , then X has a

unique decomposition almost surely.
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Joint PMF indentifiability from marginals?

Is a PMF identifiable from lower-order marginals? Let

X(i1, . . . , iN ) = Pr(X1 = i1, . . . , XN = iN )

For brevity, let’s focus on triples of random variables.

Assume that third-order marginal distributions are available i.e.,

Xjkl(ij , ik, il) = Pr(Xj = ij , Xk = ik, Xl = il)

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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A key observation

We saw that every PMF can be decomposed as

Pr(i1, . . . , iN ) =

F∑
f=1

Pr(f)

N∏
n=1

Pr(in|f).

• The PMF of any subset of rvs is also a non-negative CPD model.
e.g., every marginal PMF of 3 variables Xj , Xk, Xl can be decomposed as

Pr(ij , ik, il) =

F∑
f=1

Pr(f)Pr(ij |f)Pr(ik|f)Pr(il|f),

since
∑In
in=1 Pr(in|f) = 1.

• A non-negative CPD model that depends only on 3 factors and the
same hidden variable.
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A key observation
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Joint PMF identifiability

• Sufficient conditions for coupled CPD with one common factor:
[Sørensen & De Lathauwer, 2015]

• Lower-order marginal distributions (tensors) share multiple
factors.

→ Better approach: Consider third-order marginals for random
variables X1, X2, and a third random variable.

X
(1)
123

X
(1)
124
...

X
(1)
12N

 =


(A3 �A2)diag(λ)AT

1

(A4 �A2)diag(λ)AT
1

...
(AN �A2)diag(λ)AT

1

 =




A3

A4
...

AN

�A2

 diag(λ)AT
1

Aggregate single-CPD model!
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Joint PMF identifiability

More generally, consider a partition of the variables into 3 disjoint
subsets S1,S2,S3 such that the third-order marginals
Pr(ij , ik, il), ∀j ∈ S1,∀k ∈ S2,∀l ∈ S3 are available.
Define the following factors

Â1 = [AT
u1
, · · · ,AT

u|S1|
]T

Â2 = [AT
v1 , · · · ,A

T
v|S2|

]T

Â3 = [AT
w1
, · · · ,AT

w|S3|
]T

with ut ∈ S1, vt ∈ S2, wt ∈ S3.
We obtain a single non-negative CPD model

X̂
(1)

= (Â3 � Â2)diag(λ)ÂT
1

Assuming that I1 = . . . = IN = I, X̂ ∈ RI|S1|×I|S2|×I|S3|.

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Joint PMF identifiability

Application of the uniqueness results for 3-way tensors gives

Theorem 3

• I ≤ N The joint PMF is almost surely identifiable from the third-order
marginals if F ≤ I(N − 2).
• N ≤ I The joint PMF is almost surely identifiable from the third-order

marginals if F ≤
(
b
√
NI−1
I cI − 1

)2
.

Theorem 4

The joint PMF is almost surely identifiable from the third-order

marginals if F ≤ (bN3 cI+1)2

16 .

Note: F can be of order O(N2I2).
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Joint PMF identifiability

What about higher order marginals?

Assume that fourth-order marginals are available.
Similar to the 3-way case

X(1) = (Â4 � Â3 � Â2)diag(λ)ÂT
1 ,

which is a fourth-order tensor X̂ ∈ RI|S1|×I|S2|×I|S3|×I|S4|
+ .

A fourth-order tensor can be viewed as a third-order tensor

X̂
(1)

= (Ā3 � Â2)diag(λ)ÂT
1 ,

where Ā3 = Â4 � Â3.
In this case, identifiability can be guaranteed for much higher rank.

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Algorithmic approach

Assume that we are given incomplete vector realizations (missing
entries OK).

Estimate third-order marginal distributions from sample averages.

Xjkl(ij , ik, il) = P̂r(Xj = ij , Xk = ik, Xl = il)

Joint PMF Recovery From Triples
[S1] Estimate Xjk` from data;
[S2] Jointly factor Xjkl = [[λ,Aj ,Ak,Al]] to estimate
λ,Aj ,Ak,Al ∀ j, k, l using a CPD model with rank F ;
[S3] Synthesize the joint PMF X via Pr(i1, i2, . . . , iN ) =∑F

f=1 Pr(f)
∏N

n=1 Pr(in|f), w/ Pr(in|f) = An(in, f), Pr(f) =
λ(f).

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Low-rank joint PMF?

Does the low-rank assumption hold in practice?

The empirical joint PMF of 3 randomly selected variables from
different datasets was factored using a non-negative CPD model
with various ranks.

Relative error for different joint PMFs of 3 variables.

Rank (F )
5 10 15

INCOME 2.1× 10−2 5.5× 10−3 5.1× 10−3

MUSHROOM 4.3× 10−2 2.4× 10−2 1.9× 10−2

MOVIELENS 1.8× 10−2 7.5× 10−3 4.1× 10−3

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Problem formulation

[S2] We propose solving the following optimization problem

min
{An}Nn=1,λ

∑
j

∑
k>j

∑
l>k

1

2

∥∥Xjkl − [[λ,Aj ,Ak,Al]]
∥∥2

F

subject to λ ≥ 0, 1Tλ = 1,

An ≥ 0, n = 1, . . . , N,

1TAn = 1T , n = 1, . . . , N.

(1)

It is an instance of coupled tensor factorization.

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Example

Assume that we want to estimate a joint PMF of 4 variables given
third-order marginals. In this case, the cost function will be

f({An}4n=1,λ) =
1

2

(
‖X123 − [[λ,A1,A2,A3]]‖2F + ‖X124 − [[λ,A1,A2,A4]]‖2F

+ ‖X134 − [[λ,A1,A3,A4]]‖2F + ‖X234 − [[λ,A2,A3,A4]]‖2F

)

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Algorithm

We solve problem (1) using an alternating optimization approach.
Cyclically update variables An and λ.

The optimization problem with respect to Aj becomes

min
Aj

∑
k 6=j

∑
l 6=j
l>k

1

2

∥∥∥X(1)
jkl − (Al �Ak)diag(λ)AT

j

∥∥∥2

F

subject to Aj ≥ 0, 1TAj = 1T .

Note that we have dropped the terms that do not depend on Aj .

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Algorithm

Similarly, the optimization problem with respect to λ becomes

min
λ

∑
j

∑
k>j

∑
l>k

1

2

∥∥vec(Xjkl)− (Al �Ak �Aj)λ
∥∥2

2

subject to λ ≥ 0, 1Tλ = 1.

Both problems are linearly constrained quadratic programs, and
can be solved to optimality by standard solvers e.g., ADMM.

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Synthetic dataset

K = 20 Monte Carlo simulations with randomly generated low-rank
tensors

Number of variables: N = 5.

Alphabet size: In = 10, n = 1, . . . , 5.

Rank: F ∈ {5, 10, 15}.

Exact marginals of pairs triples and quadruples of variables are
available

MREfact = E

(
1

N

N∑
n=1

‖An − ÂnΠ‖F
‖An‖F

)
,

MREten = E

(
‖X− X̂‖F
‖X‖F

)
,

where Π is a permutation matrix to fix the permutation ambiguity.

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Synthetic dataset

Rank MREfact MREten

Pairs 0.277 0.148
F = 5 Triples 1.18× 10−7 4.58× 10−8

Quadruples 3.39× 10−8 1.19× 10−8

Pairs 0.440 0.187
F = 10 Triples 3.58× 10−7 8.70× 10−8

Quadruples 1.26× 10−7 2.58× 10−8

Pairs 0.466 0.184
F = 15 Triples 6.77× 10−7 1.52× 10−7

Quadruples 1.78× 10−7 3.57× 10−8

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Synthetic dataset

K = 20 Monte Carlo simulations with randomly generated low-rank
tensors

In = 10, n = 1, . . . , 5

F ∈ {5, 10, 15}

Generate M 5-dimensional data points by drawing samples from the
PMF. For each data point sm:

First draw a sample hm according to λ.
Then the data point sm is generated by drawing its elements
independently from {An}(:, hm)Nn=1.

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Synthetic dataset
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Mean relative error of the estimated joint PMF.
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Classification task

7 different datasets from the UCI machine learning repository were
selected.

From each dataset select discrete features.

Estimate lower-order marginal distributions of pairs, triples and
quadruples of variables.

For each dataset let XN be the label and X1, . . . , XN−1 the features.

20% used as test set, 10% as validation set and 70% as training set.

F in the range [1, 20].

MAP estimator of the label

l̂map(sm) = arg max
iN∈{1,...,IN}

Pr(iN |sm(1), . . . , sm(N − 1)).

Return the model that reports highest accuracy in validation set.

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Classification task

Misclassification error on different UCI datasets.

Binary
Method INCOME CREDIT HEART MUSHROOM VOTES
CP (Pairs) 0.177±0.004 0.134±0.019 0.151±0.023 0.010±0.007 0.046±0.024
CP (Triples) 0.175±0.003 0.129±0.018 0.147±0.031 0.006±0.002 0.043±0.024
CP (Quadruples) 0.171±0.003 0.123±0.018 0.138±0.029 0.002±0.001 0.042±0.020
SVM (Linear) 0.179±0.004 0.146±0.027 0.170±0.053 0±0 0.038±0.025
SVM (RBF) 0.174±0.004 0.136±0.018 0.187±0.055 0±0 0.079±0.024
Naive Bayes 0.209±0.005 0.140±0.018 0.166±0.026 0.044±0.005 0.096±0.022

Multiclass
Method CAR NURSERY
CP (Pairs) 0.128±0.021 0.101±0.009
CP (Triples) 0.089±0.016 0.069±0.011
CP (Quadruples) 0.074±0.015 0.061±0.007
SVM (Linear) 0.065±0.006 0.063±0.004
SVM (RBF) 0.026±0.008 0.006±0.001
Naive Bayes 0.151±0.016 0.097±0.007

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Recommender systems

MovieLens is a collaborative filtering dataset that contains 5-star movie
ratings. We extracted 3 small datasets.

3 Categories were selected; action, romance and animation.

Extracted ratings for 20 most rated movies of each smaller dataset.

20% used as test set, 10% as validation set and 70% as training set.

F in the range [1, 30].

Conditional expectation of a movie’s rating is given by

ŝN =

IN∑
iN=1

iNPr(iN |sm(1), . . . , sm(N − 1)).

Return the model that reports lowest RMSE in validation set.

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Recommender systems

RMSE and MAE of different algorithms on MovieLens.

MovieLens Dataset 1 MovieLens Dataset 2 MovieLens Dataset 3
Method RMSE MAE RMSE MAE RMSE MAE
CP (Pairs) 0.802 0.608 0.795 0.611 0.897 0.702
CP (Triples) 0.783 0.591 0.785 0.599 0.887 0.691
CP (Quadruples) 0.778 0.588 0.786 0.600 0.884 0.689
Global Average 0.945 0.693 0.906 0.653 0.996 0.798
User Average 0.879 0.679 0.830 0.625 1.010 0.768
Movie Average 0.886 0.705 0.889 0.673 0.942 0.754
BMF 0.797 0.623 0.792 0.604 0.904 0.701

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Learning Mixtures of Continuous Distributions

Let X = {Xn}Nn=1 denote a set of N continuous RVs.
Joint PDF fX is a mixture of F component distributions if it can
be expressed as

fX (x1, . . . , xN ) =

F∑
f=1

wffX|H(x1, . . . , xN |f).

Consider the special case of mixture models whose component
distributions factor into the product of the associated marginals

fX (x1, . . . , xN ) =

F∑
f=1

wf

N∏
n=1

fXn|H(xn|f),

which can be seen as a continuous extension of the CPD model.
Learning Problem: Find the conditional PDFs as well as the
mixing weights given (partially) observed samples.

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Learning Mixtures of Smooth Distributions

• Common assumption made in multivariate mixture models is a
parametric form of the conditional PDFs (e.g., Gaussian,
Laplacian).

• Most popular algorithm for learning a parametric mixture model
is Expectation Maximization (EM).

• How do we know whether true mixture components are Gaussian
or Laplacian? Convenience ...

• What if we do not not assume a parametric form for the
unknown conditional PDFs. Is it possible to recover mixtures of
non-parametric product distributions from observed samples?

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Approach

Consider a discretization of each RV Xn by partitioning its
support into I uniform intervals {∆i

n =
(
di−1
n , din

)
}1≤i≤I .

Define the probability tensor
X(i1, . . . , iN ) , Pr

(
X1 ∈ ∆i1

n , . . . , XN ∈ ∆iN
n

)
X(i1, . . . , iN ) =

F∑
f=1

wf

N∏
n=1

∫
∆in

n

fXn|H(xn|f)dxn

=

F∑
f=1

wf

N∏
n=1

Pr
(
Xn ∈ ∆in

n

∣∣H = f).

Let An(in, f) , Pr
(
Xn ∈ ∆in

n

∣∣H = f), λ(f) , wf .

X is an N -way tensor and admits a CPD X = [[λ,A1, . . . ,AN ]].

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union
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Approach

In practice we do not observe the true X but only (discretized)
samples drawn from it.

Often have to deal with missing / limited data; cannot directly
estimate X – too many unknowns.

• Is it still possible to learn the mixing weights and discretized
conditional PDFs?

� Yes! Joint factorization of histogram estimates of
lower-dimensional PDFs.

• Is it possible to recover non-parametric conditional PDFs from
their discretized counterparts?

� Yes, if the conditional PDFs are approximately band-limited
(smooth).
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Toy Example

It is possible to estimate samples of the conditional CDFs from the
recovered factor matrices An, n = 1, . . . , N .
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c
  0.8

Illustration of the key idea on a univariate Gaussian mixture. The CDF
can be recovered from its samples if Ts ≤ π

0.8 .
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Synthetic dataset

We generate synthetic datasets {xm}Mm=1 of varying sample size.

In = 15, n = 1, . . . , 10

F ∈ {5, 10}

We explore the following settings for the conditional PDFs: (1)
Gaussian (2) Gaussian mixture with two components. Evaluate the
performance of the algorithms by computing

1. Clustering accuracy on M ′ = 1000 test points.
2. KL divergence between the true and learned model, which is

approximated using Monte Carlo integration.

DKL

(
fX , f̂X

)
≈ 1

M ′

M ′∑
m′=1

log fX (xm′)/f̂X (xm′).
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Synthetic dataset (Gaussian)
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Synthetic dataset (Gaussian mixture)
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Take-home points

Concluding remarks

High dimensional joint PMFs hard to estimate.

First estimate lower-order marginals.

Fuse together using coupled CPD to estimate high-order joint.

Identifiability of full joint PMF when rank is small.

Analogy to Kolmogorov extension.

Real-life random variables are never completely dependent.

Small rank can capture significant statistical dependence.

Scratched surface – lots of exciting research ahead!

Thank you!
Questions?
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