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Motivation

❑ A growing amount of attention on deep neural 
networks (DNNs), due to their excellent performance

❑ DNN model becomes an emerging form of digital 
intellectual property (IP) asset

❖ Require massive labor work and expensive resource

❖ Profitable asset

❖ The consideration of IP protection and privacy issues

❖ Similar to the situation of digital media in the 1990s

❑ Need to provide access control, protect privacy, and 
mitigate piracy/theft to trained DNN models



3

Prior Art on IP Issues of DNNs

❑ Digital watermarks and fingerprints

❖ [Uchida et al., 14], [Nagai et al., 18], [Rouhani et al., 18] 
embedded watermarks into DNN models to protect IP and 
claim the ownership

❑ Adversarial examples

❑ Poisoned data Watermarks
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Prior Art on IP Issues of DNNs

❑ Digital watermarks and fingerprints

❑ Adversarial examples

❖ [Merrer et al., 17] utilized adversarial examples as a 
unique signature of one given DNN model

❑ Poisoned data
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Prior Art on IP Issues of DNNs

❑ Digital watermarks and fingerprints

❑ Adversarial examples

❑ Poisoned data

❖ [Chen et al., 17], [Zhang et al., 18] designed poisoned 
training data to leave backdoors in the model
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Limitations

❑ None of the prior art actively addresses the problem of 
unauthorized access and piracy/theft for profit

❑ Intuitive approaches

❖ Password-based access control:

❖ Encrypt the weights of the DNN:
• Encrypt the parameters for security

• Computation via homomorphic encryption.

• Drawback: high computational complexity

Password-based system

DNN

Authorized

Unauthorized
DNN
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Our Work

❑ Propose a novel framework to obtain a trained DNN

❖ Provide “piracy prevention” via intrinsic adversarial 
behavior

❖ Achieve differential learning performance of authorized vs. 
unauthorized inputs, respectively

❑ Model threats in 3 levels and examine the system 
performance under attacks
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Reviews: Adversarial Examples

❑ Small perturbations can result in totally different outcome.

❑ A DNN model can have good performance on the raw inputs, 
but dysfunctional to the adversarial examples.

from [Goodfellow et al., 14]

Can we utilize adversarial behavior of DNNs to 

differentiate the performance responding to the 

authorized and unauthorized access?
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Framework

❑ Feed in the input, and obtain a good prediction

❑ Feed in the adversarial example, and obtain wrong outcome

F(·)

Adversarial 

example

Raw 

input

DNN



10

Framework

❑ Two input sources: authorized vs unauthorized

❑ Two differential learning performances: authorized vs 
unauthorized

Authorized 

input

Unauthorized 

users

F(·)

Authorized 

users

equiv. to 

adversarial ex.

Unauthorized 

input

equiv. to 

raw input
DNN

Raw 

input

Processed 

input
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Framework

❑ Anti-piracy transform module: generating valid input for 
authorized users

❑ Perturbation-based transformation (Inspired by adversarial 
examples)

❑ Anti-piracy DNN is capable of distinguishing inputs: 
authorized vs unauthorized

Raw 

input

Processed 

input

Unauthorized 

users

Anti-piracy 

Transform Module

F(·)

Anti-piracy

DNN
G(·) PerturbationAuthorized 

users
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Threat Modeling

❑ A simple, opportunistic attack

❑ Input-only attack

❑ Pair attack

Anti-piracy 

Transform Module F(·)

Anti-piracy

DNN
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Threat Modeling

❑ A simple, opportunistic attack

❖ The adversary directly copies the anti-piracy DNN model

❑ Input-only attack

❑ Pair attack

Anti-piracy 

Transform Module F(·)

Anti-piracy

DNN Copy
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Threat Modeling

❑ A simple, opportunistic attack

❑ Input-only attack

❖ The adversary accesses limited resources, i.e., only the raw 
inputs

❑ Pair attack

Anti-piracy 

Transform Module F(·)

Anti-piracy

DNN
Guess
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Threat Modeling

❑ A simple, opportunistic attack

❑ Input-only attack

❑ Pair attack

❖ The adversary successfully obtains the input-output pairs 
of anti-piracy transform module

Anti-piracy 

Transform Module F(·)

Anti-piracy

DNN
Guess
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Training Formulation

❑ The cross-entropy loss for the processed input xp:

❑ The similarity loss for the raw input xr:

❑ We formulate the loss function E as

Note:

p is the one-hot encoding 

ground truth

qp and qr are the softmax

output of xp and xr

confine the generated 

perturbations in a small range
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Anti-piracy Transform

❑ Fixed approach

❑ Learned approach

❑ Generator approach

Anti-piracy 

Transform Module
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Anti-piracy Transform

❑ Fixed approach: generates a universal perturbation 
matrix beforehand by the owners

❑ Learned approach
❑ Generator approach

Anti-piracy 

Transform Module

G(·)
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input
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input

Customized
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Anti-piracy Transform

❑ Fixed approach
❑ Learned approach: finding the optimal universal 

perturbation matrix for all input instances
❑ Generator approach

Anti-piracy 

Transform Module

G(·)
Raw 

input

Processed 

input

Learned
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Anti-piracy Transform

❑ Fixed approach
❑ Learned approach
❑ Generator approach: formulates an input-dependent 

perturbation generator, which can be a fully-
connected network, or a convolutional network

Anti-piracy 

Transform Module

G(·)
Raw 

input

Processed 

input

Input-dependent
…
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Experimental Settings

❑ Anti-piracy DNN structures:

❑ Anti-piracy transform module:
❖ Fixed approach: bipolar perturbation, whereby the amplitude of each 

pixel perturbation is taken from {−𝜎, 0, 𝜎} with prob. 𝑝, 1 − 2𝑝, 𝑝 .

❖ Learned approach

❖ Generator approach: a convolutional layer (5-by-5), cascaded by a 
bottleneck layer (1-by-1).

simple CNN Resnet-20 [He et al., 16]
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Performance of the Proposed Framework

* Authorized vs unauthorized access (in the parentheses)

* Baseline: Trained regular DNN with the same architecture  
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Visualization of Raw and Processed Inputs

(a) Simple CNN model

on Fashion dataset.

(b) Resnet-20 model

on CIFAR10 dataset.

raw 

inputs

Generator

Fixed
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Performance Under Attacks
(Test on Resnet-20 model for Fashion dataset)

Three levels of attack approaches:

1. Direct piracy: directly copy the anti-piracy DNN model

2. Input-only attack: generate universal bipolar perturbation with same 

parameter 𝜎 and 𝑝

3. Pair attack: Use 10%, 50%, 100% pairs of raw input and processed 

input to train a transform module
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Performance Under Attacks
(Test on Resnet-20 model for Fashion dataset)

Three levels of attack approaches:

1. Direct piracy: directly copy the anti-piracy DNN model

2. Input-only attack: generate universal bipolar perturbation with same 

parameter 𝜎 and 𝑝

3. Pair attack: Use 10%, 50%, 100% pairs of raw input and processed 

input to train a transform module

1% performance boost in the state-of-the-art DNN model 

could be considered as a breakthrough in the DNN modeling
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Conclusions

❑ Proposed a novel framework to address the piracy 
issue, via the intrinsic adversarial behavior of DNNs

❑ Anti-piracy DNN can provide differential learning 
performance to authorized vs. unauthorized access

❑ Proposed three types of transform modules and 
explored the performance

❑ Investigated the potential attacks and analyzed the 
resistance of the proposed framework
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