Protect Your Deep Neural Networks from Piracy

Mingliang Chen and Min Wu

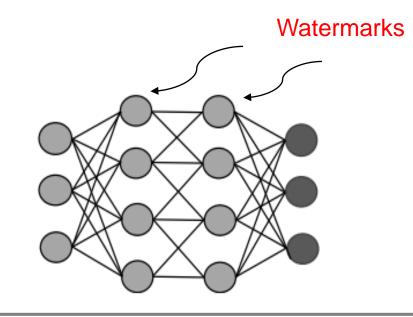
Media and Security Team (MAST) University of Maryland, College Park 2018.12.11

Motivation

- A growing amount of attention on deep neural networks (DNNs), due to their excellent performance
- DNN model becomes an emerging form of digital intellectual property (IP) asset
 - Require massive labor work and expensive resource
 - Profitable asset
 - The consideration of IP protection and privacy issues
 - Similar to the situation of digital media in the 1990s
- Need to provide access control, protect privacy, and mitigate piracy/theft to trained DNN models

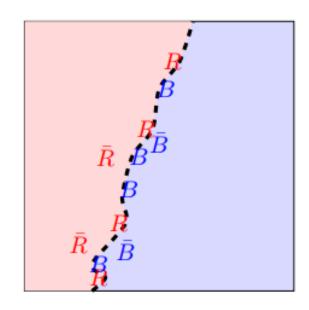
Prior Art on IP Issues of DNNs

- Digital watermarks and fingerprints
 - [Uchida et al., 14], [Nagai et al., 18], [Rouhani et al., 18] embedded watermarks into DNN models to protect IP and claim the ownership
- Adversarial examples
- Poisoned data



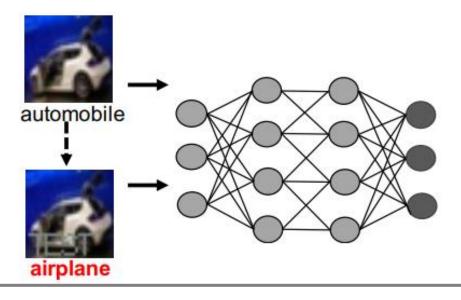
Prior Art on IP Issues of DNNs

- Digital watermarks and fingerprints
- Adversarial examples
 - [Merrer et al., 17] utilized adversarial examples as a unique signature of one given DNN model
- Poisoned data



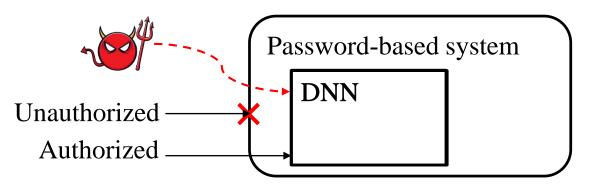
Prior Art on IP Issues of DNNs

- Digital watermarks and fingerprints
- Adversarial examples
- Poisoned data
 - Chen et al., 17], [Zhang et al., 18] designed poisoned training data to leave backdoors in the model



Limitations

- None of the prior art actively addresses the problem of unauthorized access and piracy/theft for profit
- Intuitive approaches
 - Password-based access control:



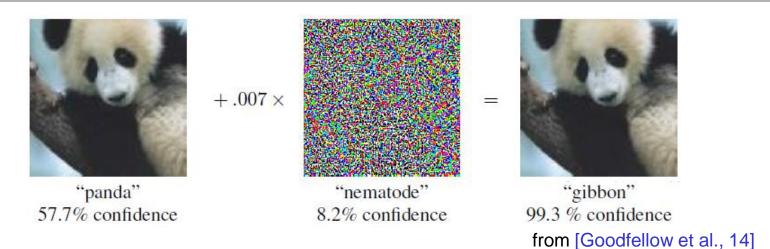
- Encrypt the weights of the DNN:
 - Encrypt the parameters for security
 - Computation via homomorphic encryption.
 - Drawback: high computational complexity

Our Work

Propose a novel framework to obtain a trained DNN

- Provide "piracy prevention" via intrinsic adversarial behavior
- Achieve differential learning performance of *authorized* vs. *unauthorized* inputs, respectively
- Model threats in 3 levels and examine the system performance under attacks

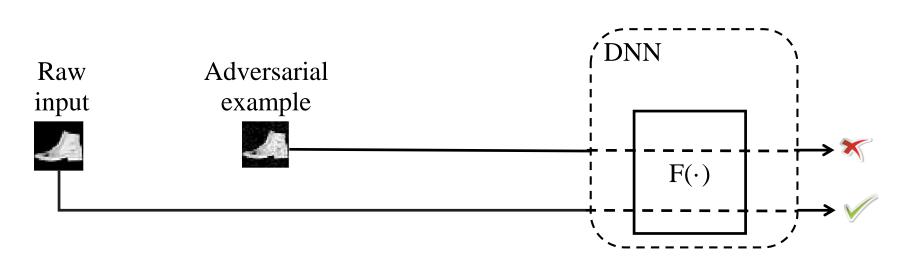
Reviews: Adversarial Examples



- Small perturbations can result in totally different outcome.
- A DNN model can have good performance on the raw inputs, but dysfunctional to the adversarial examples.

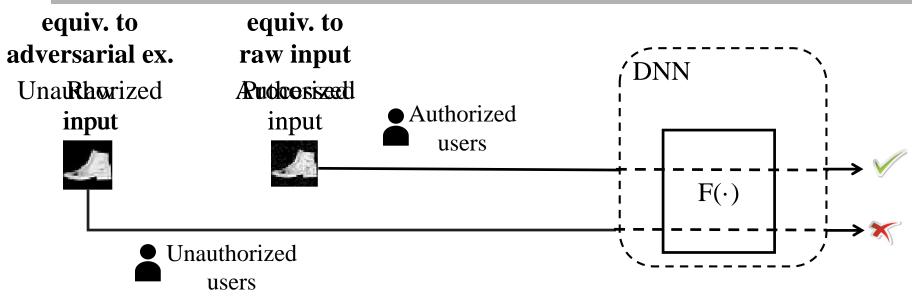
Can we utilize adversarial behavior of DNNs to differentiate the performance responding to the *authorized* and *unauthorized* access?

Framework



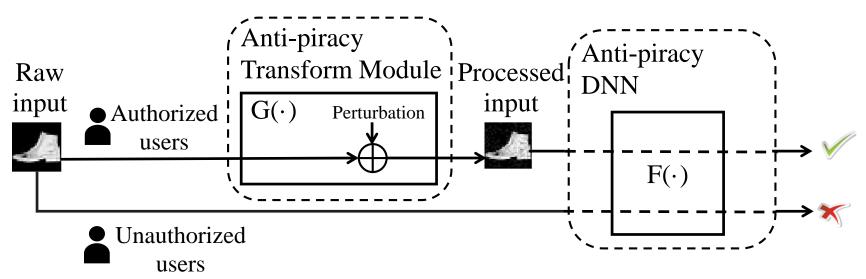
- □ Feed in the input, and obtain a good prediction
- □ Feed in the adversarial example, and obtain wrong outcome

Framework



- Two input sources: *authorized* vs *unauthorized*
- Two differential learning performances: authorized vs unauthorized

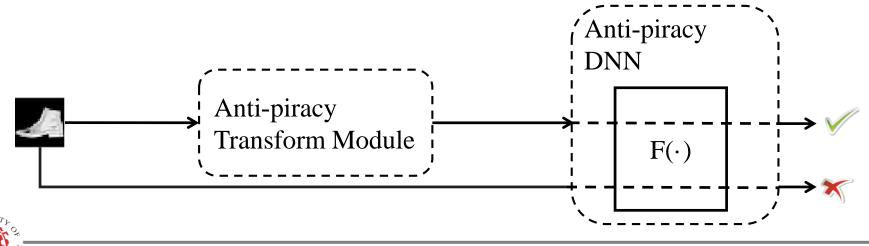
Framework



- Anti-piracy transform module: generating valid input for authorized users
- Perturbation-based transformation (Inspired by adversarial examples)
- Anti-piracy DNN is capable of distinguishing inputs:

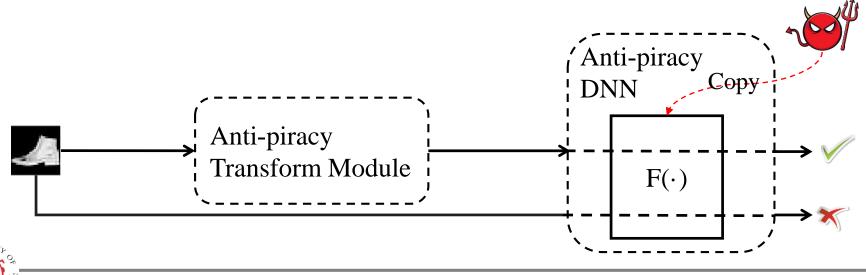
authorized vs unauthorized

- □ A simple, *opportunistic* attack
- Input-only attack
- Pair attack

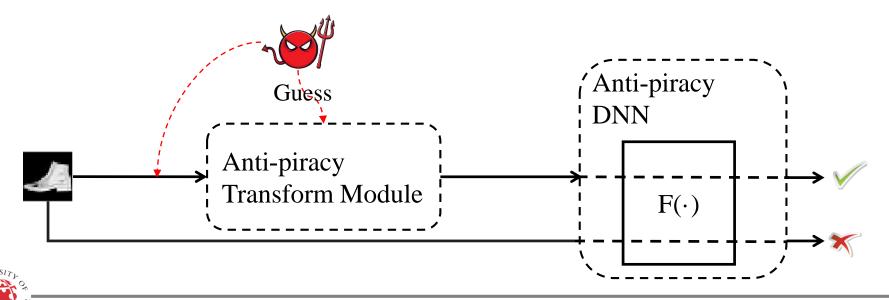


A simple, opportunistic attack

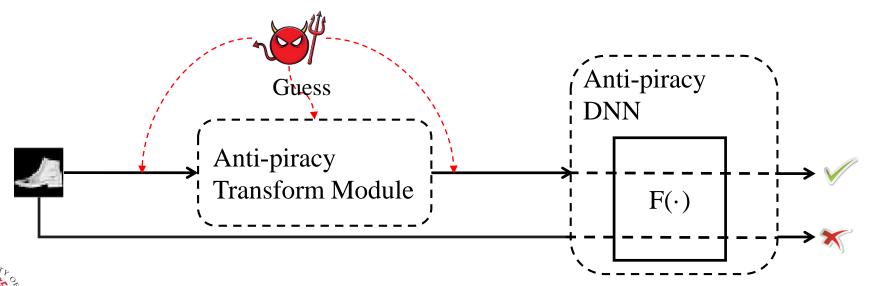
- The adversary directly copies the anti-piracy DNN model
- Input-only attack
- Pair attack



- □ A simple, *opportunistic* attack
- Input-only attack
 - The adversary accesses limited resources, i.e., only the raw inputs
- Pair attack



- □ A simple, *opportunistic* attack
- Input-only attack
- Pair attack
 - The adversary successfully obtains the input-output pairs of anti-piracy transform module



The cross-entropy loss for the processed input x_p :

$$E_p = -\sum_{i=1}^N p_i \log q_{p,i}$$

The similarity loss for the raw input x_r :

$$E_r = \sum_{i=1}^N p_i q_{r,i}$$

Note:

p is the one-hot encoding ground truth

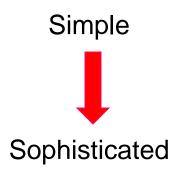
 q_p and q_r are the softmax output of x_p and x_r

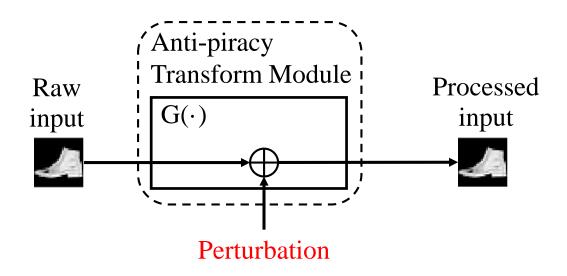
We formulate the loss function E as

$$E = \alpha E_p + \beta E_r + \gamma \left\| x_p - x_r \right\|_2^2$$

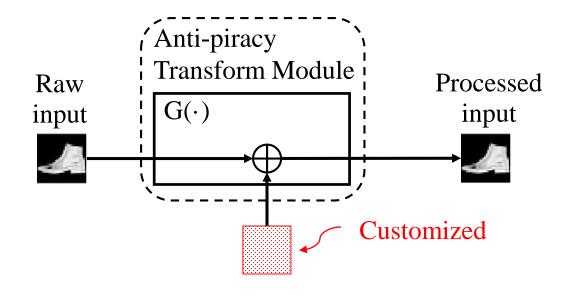
Confine the generated perturbations in a small range

- Fixed approach
- Learned approach
- Generator approach

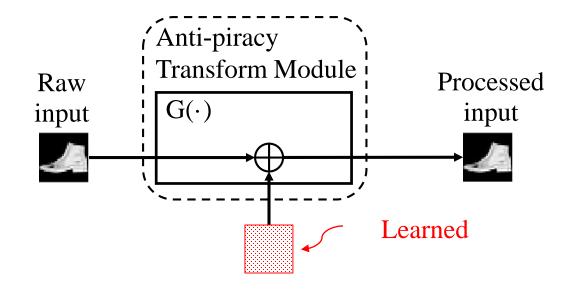




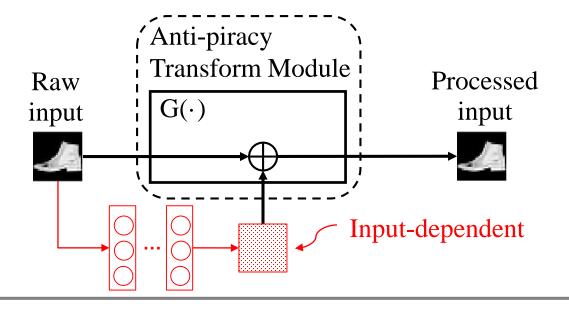
- Fixed approach: generates a universal perturbation matrix beforehand by the owners
- Learned approach
- Generator approach



- Fixed approach
- Learned approach: finding the optimal universal perturbation matrix for all input instances
- Generator approach



- Fixed approach
- Learned approach
- Generator approach: formulates an input-dependent perturbation generator, which can be a fullyconnected network, or a convolutional network



Experimental Settings

Anti-piracy DNN structures: simple CNN

Layer	Output size	Building block		
conv1	28×28	$[3 \times 3, 32]$		
pool1	14×14	max, 2×2		
conv2	14×14	$[3 \times 3, 64]$		
pool2	7×7	max, 2×2		
fc1	1024	dropout: 0.5		
fc2/output	10	softmax		

Resnet-20 [He et al., 16]

Layer	Output size	Building block
conv1	28×28	$[3 \times 3, 16]$
conv2_x	28×28	$\begin{bmatrix} 3 \times 3, 16 \\ 3 \times 3, 16 \end{bmatrix} \times 3$
conv3_x	14×14	$\begin{bmatrix} 3 \times 3, 32 \\ 3 \times 3, 32 \end{bmatrix} \times 3$
conv4_x	7×7	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 3$
output	10	global avg-pool, fc, softmax

Anti-piracy transform module:

- ★ Fixed approach: bipolar perturbation, whereby the amplitude of each pixel perturbation is taken from { $-\sigma$, 0, σ} with prob. {p, 1 − 2p, p}.
- *Learned* approach
- Generator approach: a convolutional layer (5-by-5), cascaded by a bottleneck layer (1-by-1).

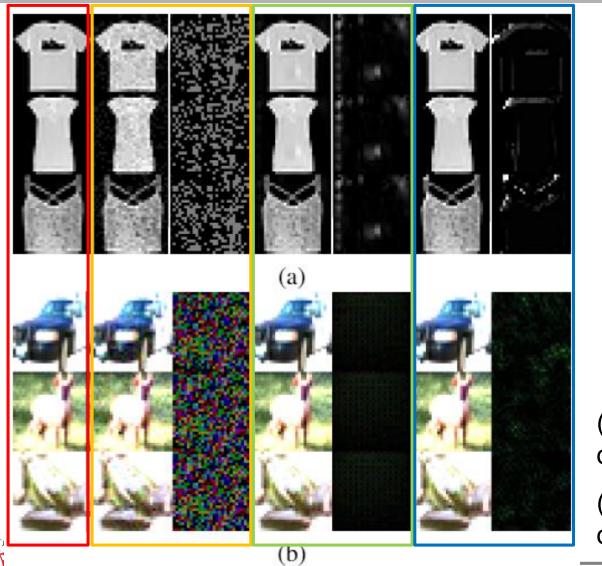
Performance of the Proposed Framework

	Dataset				
	MNIST	Fashion	Fashion	CIFAR10	
Model	simple	e CNN	Resnet-20		
Baseline	99.12%	91.80%	92.63%	90.74%	
Fixed	99.24%	91.88%	91.65%	89.73%	
	(0.24%)	(1.09%)	(0.63%)	(0.52%)	
Learned	99.18%	92.06%	92.56%	90.58%	
	(0.10%)	(2.18%)	(0.65%)	(0.86%)	
Generator	99.23%	91.82%	92.55%	90.61%	
	(0.23%)	(2.76%)	(1.55%)	(0.78%)	

* Authorized vs unauthorized access (in the parentheses)

* Baseline: Trained regular DNN with the same architecture

Visualization of Raw and Processed Inputs



raw inputs Fixed Learned Generator

(a) Simple CNN model on Fashion dataset.

(b) Resnet-20 model on CIFAR10 dataset.

23

Performance Under Attacks

(Test on Resnet-20 model for Fashion dataset)

Three levels of attack approaches:

- 1. Direct piracy: directly copy the anti-piracy DNN model
- 2. Input-only attack: generate universal bipolar perturbation with same parameter σ and p
- 3. Pair attack: Use 10%, 50%, 100% pairs of raw input and processed input to train a transform module

Transform module			Fixed	Learned	Generator
Authorized access			91.65%	92.56%	92.55%
Direct piracy			0.63%	0.65%	1.55%
Input-only attack		Mean	66.23%	55.37%	3.17%
		Best	78.96%	79.42%	4.95%
Pair attack	10%	Mean	-	-	75.05%
		Best	-	-	82.11%
	50%	Mean	-	-	76.31%
		Best	-	-	84.17%
	100%	Mean	-	-	77.24%
		Best	-	-	86.00%

Performance Under Attacks

(Test on Resnet-20 model for Fashion dataset) -

Three levels of attack approaches:

- 1. Direct piracy: directly copy the anti-piracy DNN model
- 2. Input-only attack: generate universal bipolar perturbation with same parameter σ and p
- 3. Pair attack: Use 10%, 50%, 100% pairs of raw input and processed input to train a transform module

	Transform moduleAuthorized accessDirect piracy			Fixed	Learned	Generator	
				91.65%	92.56%	92.55%	
				0.63%	0.65%	1.55%	
Input only		ottoolz	Mean	66.23%	55.37%	3.17%	
	Input-only attack		Best	78.96%	79.42%	4.95%	
		10%	Mean	-	-	75.05%	
		10%	Best	-	-	82.11%	
	Dair attack	50%	Mean	-	-	76.31%	
1% per	Pair attack formance	boost	i ^{Be} the	e state-	of-the-a	rt ÐNN∲ m	nodel
could h	e consid		Mean	akthro	uab ⁻ in tl	-7724%	nodeling
		ree/a	Best	Eakino		86.00%	nouenng
56			-				

Conclusions

- Proposed a novel framework to address the piracy issue, via the intrinsic adversarial behavior of DNNs
- Anti-piracy DNN can provide differential learning performance to *authorized* vs. *unauthorized* access
- Proposed three types of transform modules and explored the performance
- Investigated the potential attacks and analyzed the resistance of the proposed framework

Protect Your Deep Neural Networks from Piracy

Mingliang Chen and Min Wu

Media and Security Team (MAST) University of Maryland, College Park 2018.12.11

