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ABSTRACT

Internet-of-Things (IoT) networks are envisioned to typically
include a massive number of devices with sporadic and low-
latency uplink service needs. This paper presents a blind
demixing approach to support the data recovery of multiple
simultaneous and unscheduled device transmissions without
a priori channel state information (CSI). The proposed joint
receiver leverages the group sparse bilinear characteristics
of the underlying problem that involves active device detec-
tion and data recovery. We exploit the manifold geometry
of rank-one matrices in the lifted bilinear equation and apply
smoothed ¢1 /¢3-norm to induce the group sparsity for active
device detection. We further develop a smoothed Riemannian
algorithm to solve the sparse blind demixing optimization
problem. Numerical results demonstrate the algorithmic ad-
vantage and desirable performance of the proposed algorithm.

Index Terms— Blind demixing, device activity detection,
CSI, data recovery, manifold optimization.

1. INTRODUCTION

The significant success of wireless technologies has been
achieved towards connecting sensors, machines and robots
for novel applications, thereby establishing the bedrock for
the Internet-of-Things (IoT). The IoT connectivity will bring
remarkable benefits to our lives, e.g., smart home, smart city,
health care, transportation system, etc. A typical IoT con-
nectivity involves a massive number of machine-type com-
munication devices where hundreds of or even thousands of
devices need to be connected. However, in the typical scenar-
ios, the IoT device traffic patterns are sporadic where devices
are designed to rest most of the time in order to save energy
and are activated only when triggered by external events [1].
Furthermore, for the emerging Tactile Internet services, e.g.,
immersive virtual reality and cooperative automated driving,
the additional haptic information needs to be further delivered
in ultra-low latency communication [2]. It is thus crucial to
support massive connectivity with low-latency communica-
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tion to satisfy the diversified and tight traffic requirements in
the IoT networks.

A growing body of literature has recently proposed vari-
ous methods to deal with massive connectivity problem in IoT
networks. Typically, the massive [oT connectivity consists
of three components: active device detection, channel esti-
mation, and their data decoding. The advanced compressive
sensing techniques based on message passing [3] and inte-
gral geometry [4] has recently been developed for joint device
activity detection and channel estimation, followed by data
decoding supported by massive MIMO [5]. It turns out that
this two-stage grant-free random access paradigm offers the
potential to reduce access latency compared with the grant-
based access [1]. However, this framework essential needs to
estimate the channel information for data decoding, which in-
curs latency. To reduce the channel signaling overhead, blind
demixing has become a promising way to detect data for mul-
tiple users without the prior knowledge of channel informa-
tion [6, 7], thereby providing low-latency communication by
assuming all the users are active.

In contrast, in this paper, we shall propose a novel sparse
blind demixing approach to support massive low-latency ac-
cess for IoT networks. This is achieved by enabling sporadic
device activity detection, as well as their channel estimation
and data decoding into a unified framework. Specifically, we
simultaneously detect active devices and decode their data
without the knowledge of channel information. However,
it turns out that the sparse blind demixing is a joint group
sparse and low-rank estimation problem with a sparse bilin-
ear model. Specifically, the group sparsity serves the purpose
of detecting active devices, while the low-rankness models
the bilinear measurements via lifting [6]. Although the con-
vex relaxation approaches based on the ¢ /¢2-norm [8], the
nuclear norm [9], or the combination of the ¢; /¢5-norm and
the nuclear norm [10], they are normally computationally
prohibitive due to the high computation and storage cost.
The nonconvex paradigm thus becomes a promising way to
solve the nonconvex bilinear systems [11, 12] and the sparse
bilinear systems [13, 14] by solving the estimation the prob-
lem in the natural vector space using the gradient methods
[12, 11, 14] or the alternating minimization algorithm [13].

However, the presented sparse blind demixing brings



unique challenge due to the group sparsity structure cou-
pled with the sum of multiple bilinear measurements. To
enjoy high computational efficiency and good performance
for solving the sparse blind demixing problem, in this paper,
we shall propose a smoothed Riemannian optimization algo-
rithm on the product manifold. This is achieved by exploiting
quotient manifold geometry of the product of rank-one ma-
trices to address the multiple nonconvex bilinear constraints
[7]. The smoothed ¢y /¢3-norm is further developed to in-
duce the group sparsity for active device detection, as well as
fit the scope of the Riemannian optimization framework, as
the objective function is normally required to be smooth for
efficient manifold optimization algorithms design [15, 16].

2. PROBLEM FORMULATION

In this section, we present a sparse blind demixing for grant-
free massive connectivity with low-latency communications.

2.1. System Model

We consider the Internet-of-Things (IoT) network consisting
of one single-antenna base station (BS) and s single-antenna
devices with sporadic traffic. Specifically, in each coherence
block, only an unknown subset of devices are active, defined
as A C {1,2,---, s} [1]. We assume that all the active users
are synchronized by sending a beacon for the active devices
from the BS.

Let mi € C¥ denote the original data symbols transmit-
ted by the k-th user. Suppose that each device k is preassigned
with a matrix A, € C™* N followed by encoding the source
signal a:i as Akwi over the m time slots. Let " denotes the
conjugate transpose of the vector . Over m time slots, the
received signals at the base station in the frequency domain
are given as [6, 12]

Yj = ZkeA b;'hixiHakj +ej, 1 <j<m, (1)

where hi € C¥ are unknown channel vectors, ej ~
N(0,02)+iN (0, 0?) is the additive white complex Gaussian
noise with 1/02 being the measurement of noise variance.
Here, the first K columns of the unitary discrete Fourier
transform (DFT) matrix F € C™*™ with FFM = I,
form the known matrix B := [by,--- ,b,,]" € C™*K with
b; € CK for 1 < j < m[17, 12]. Furthermore, ay; € CV
are known design vectors, which typically follow the i.i.d.
complex Gaussian distribution [17, 12].

The massive IoT connectivity problem involves three
components: sporadic device activity detection, channel es-
timation, and data decoding for the active devices. The
advanced sparse signal estimation approach has recently been
developed for joint activity detection and channel estima-
tion [4, 3], followed by decoding their data [5]. By directly
transmitting the metadata (e.g., preamble for active device
detection and channel estimation) and data symbols to the BS
without waiting for permission, this two-stage paradigm of

grant-free random access has potential to reduce the access
latency compared with the grant-based access scheme [1].

In contrast, in this paper, we propose a holistic view for
grant-free massive [oT connectivity with low-latency commu-
nications. This is achieved by unifying the three components
of active device detection A, channel estimation hi ’s and data

decoding x; ’s into a framework, yielding a novel sparse blind
demixing approach. That is to say, we are able to offer the pos-
sibility for massive low-latency access without the knowledge
of channel information via sparse blind demixing.

2.2. Spare Blind Demixing

Let z = [zf,...,2T]T € CN* with the index set V =
{1,2,..., Ns} being the aggregative data vector to be de-

tected. Consider the collection of groups G = {G1,Gs, ..., Gs}
with G, = {N(k—1)+1,...,Nk}and G, N G; = 0 for

i # j. Define the support of the data vector as Supp(x) =

{ilz; # 0,¥i € V}. Therefore, the sparse blind demixing

problem can be formulated as follows:

Z I(Supp(z) NGi # )

& . minimize
{zr} {hr}

S

k=1

m 2

subject to Z ‘ Z b';hkwgakj —y;i| <e
j=1 k=1

where parameter ¢ > 0 is assumed to be known a priori,
I(Supp(z) N G # 0) is an indicator function that takes
value 1 if Supp(z) N Gy # 0 and 0 otherwise, ¢, € CV
and hy, € CK for k = 1,--- , s are the optimization param-
eters. Let «* be a solution of problem &2, the set of active
devices is given as A* = {k : Supp(x) N Gx # 0}.

However, problem & turns out to be highly intractable
due to the combinatorial objective function and the noncon-
vex bilinear constraint, for which we shall propose efficient
algorithms with good performance.

2.3. Problem Analysis

A natural way to deal with the sparse blind demixing prob-
lem is to lift the bilinear model into the linear model with a
low-rank matrix [18, 6], i.e., b hyaflar; = bfWiay; with
Wy € CEXN and rank(W}) = 1,Vk = 1,...,s. To ad-
dress the algorithmic challenge of the lifted problem &7 due
to the sparsity and low-rankness in matrices W5’s, the natu-
ral approach is to adopt the idea of convex relaxation, yielding
the following semidefinite programming (SDP) problem:

minimize A 370 (Wil + 030, Wil

. m S H ) ) 2
subject to ijl ‘ Zk:l bj Wiar; — yj‘ <e, (2
where A\; > 0 and Ay > 0 are the regularization parameters.

Here, ||Wj]|. is the nuclear norm of matrix Wy, i.e., the
sum of its singular values, to relax the rank-one constraints




of matrices Wy’s [18, 6]. With the group sparsity structure
in the data vector &, we have group sparsity structure in the
lifting vector vec(W) = [vec(W)H ... vec(W,)HH ¢
CKENs_ where the operation vec(M) denotes the vector-
ization of matrix M. The ¢;/{y-norm serves the convex
surrogate of inducing group sparsity in the vector vec(W),
e [[vec(W)lliz = Shey Ivee(Wi)llz = Siy Wil .
where ||[M||r represents the Frobenius norm of matrix M
[19, 10]. Although the convex relaxation approach (2) pro-
vides a polynomial time complexity algorithm to solve the
sparse blind demixing problem & in the lifted matrix space,
it is computationally prohibitive for solving large-scale SDP
problem (2).

Therefore, another line of literature has developed effi-
cient nonconvex algorithms to solve the sparse and low-rank
optimization problem [12, 13, 14] in the natural vector space.
In particular, the provable Wirtinger flow algorithm was pro-
vided in [12] to solve the blind demixing problem without the
additional sparsity structure. For the sparse blind deconvo-
lution problem, i.e., the bilinear model with single user and
the individual sparsity, the provable alternating minimization
was developed in [13] and the simple descent algorithm was
proven able to escape strict saddle points and then recover the
ground truth signal [14]. However, the sparse blind demixing
problem & brings unique challenges to adopt the nonconvex
optimization paradigm due to the additional group sparsity
structure and the sum of multiple bilinear measurements.

Instead, in this paper, we shall propose a smoothed Rie-
mannian optimization approach to solve the sparse blind
demixing problem to achieve the algorithmic advantages and
admirable performance. This is achieved by exploiting the
manifold geometry of the product of rank-one matrices to
address the nonconvex bilinear constraints, and developing
the smoothed ¢; /¢2-norm to induce the group sparsity.

3. SMOOTHED RIEMANNIAN OPTIMIZATION ON
PRODUCT MANIFOLD

In this section, we shall develop a smoothed Riemannian op-
timization algorithm to solve the sparse blind demixing prob-
lem & to improve computational efficiency and enjoy good
performance.

3.1. Optimization on Product Manifold

To begin with, we reformulate problem & as a regularized
optimization problem with fixed-rank constraints via lift-
ing. Specifically, let Sf K denote the set of (N + K) x
(N + K) Hermitian positive semidefinite matrices. For
k=1,---,s,5 =1,---,m, we define ¢; = [b?,O'fV]H €
CNTE dy; = [0%,a}}]" € CNTK hence it yields
c]HMkdkj = b;'hkm?akj, where M, = wkw,': € S_IX"’K
is a Hermitian positive semidefinite matrix with w; =
(B, aliH & OV

Therefore, problem &7 can be equivalently reformulated
as the following optimization problem on the product of Her-

mitian positive semidefinite matrices:

m S 2
min%\rdnize Z ‘ Z C;‘Mkdkj —y;| +A(M)
j=1 k=1
subjectto rank(My) =1, k=1,---,s, 3)

where M = {M,};_, with M, € SYE, f(M) is the
function to induce the sparsity structure and A > 0 is the
regularization parameter. Note that each Mj, lies on the man-
ifold encoded by complex symmetric rank-one matrices, de-
noted as My [7]. We thus have M € M?, where M?® :=
My x Mg x -+ x Mg represents the product of manifolds
M. We aim to develop computationally efficient Rieman-
nian optimization algorithms on product manifold by exploit-
ing the quotient manifold geometry of the product of complex
symmetric rank-one matrices.

3.2. Smoothed Riemannian Optimization

To adopt the principle of Riemannian optimization for solving
problem (3), smooth objective function is normally required
[16, 20]. To achieve this goal, we shall present the smoothed
01 /¢3-norm to induce the group sparsity structure in vector
vec(M) = [vec(M)M, .- vec(M "M, ie., f(M) =

s 2 1/2
Sict (1M} + )
rameter with a small value. Hence, the proposed smoothed
Riemannian optimization approach over the product manifold
M for solving the sparse blind demixing problem &7 is pre-
sented as

with € > 0 as the smoothing pa-

S

m 2

.. . H

minimize E 1 ’ kg 1cj Mydy; —y;| +Af(M), @
=1 ke

where the objective function is smooth and the constraint is a
manifold.

Based on the geometry of the product manifold, the Rie-
mannian optimization algorithms operated on the product
manifold M?® can be elementwisely operated over the indi-
vidual manifolds My [7]. Specifically, for each manifold
M, we search the update direction on the horizontal space
of the manifold and then retract it on the manifold via re-
traction mapping. Here, searching the update direction can
be achieved by the Riemannian optimization algorithms, e.g.,
conjugate gradient descent algorithm based on the Rieman-
nian gradient [16].

4. SIMULATION RESULTS

In this section, we simulate our proposed smoothed Rie-
mannian optimization algorithm for solving the sparse blind
demixing problem & to demonstrate the algorithmic advan-
tages and good performance.
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Fig. 1. Probability of successful recovery with different sam-
ple sizes m.

4.1. Simulation Settings and Performance Metric

The simulation settings are given as: 1) Recall that A denotes
the index set of active devices. For k ¢ A, we set ¢, = Oy.
For k € A, entries of mi are signals generated via quadrature

phase shift keying (QPSK) modulation, and k% € CX are
drawn i.i.d from the standard complex Gaussian distribution.
2) Measurement vectors {b;}, {ax;}: We generate the nor-
malized discrete Fourier transform (DFT) matrix F' € C™*™
and the complex Gaussian vectors ay; € C¥ to construct
the measurement vectors according to Section 2.1. 3) Per-
formance metric: The average relative construction error is
adopted to evaluate the performance of the algorithms [12].

The four algorithms are compared: 1) Riemannian
conjugate-gradient descent algorithm (RCGD): The Rie-
mannian conjugate-gradient descent algorithm (RCGD) for
solving (4) is implemented using the manifold optimization
toolbox Manopt [21]. The RCGD algorithm adopts the initial-
ization strategy in [7] and stops when the norm of Riemannian
gradient falls below 10~% or the number of iterations exceeds
500. The regularization parameter A is determined via cross
validation. 2) Nuclear norm minimization (NNM): The
algorithm is implemented with the toolbox CVX [22] to solve
the convex relaxation problem (2) with A\; = 1, Ay = 0. 3)
{1 /¢3-norm minimization (LMN): The setting of this algo-
rithm is similar to NNM except for A\; = 0, A, = 1. 4) Mixed
norm minimization (MNM): The setting of this algorithm
is similar to NNM except that A\; and A\ are chosen via cross
validation.

We investigate the empirical recovery performance of
above four algorithms, i.e., RCGD, NNM, LMN and MNM.
We set N = K = 10, s = 10, |A| = 3 with sample size m
varying from 100 to 560. For each setting, 30 independent
trails are performed and the recovery is treated as a success if
the relative construction error err(z) < 10~2. Fig. 1 shows
the probability of successful recovery for different sample
sizes m. Based on the phase transitions results in Fig. 1, we
can see that the proposed smoothed Riemannian optimization
algorithm achieves much better performance compared with
the LMN algorithm, i.e., exactly recover the ground truth
signals with less samples. Although the RCGD, NNM and
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Fig. 2. Average relative construction error vs. SNR (dB).

MNM algorithms achieve almost the same performance, the
RCGD algorithm has the capability to scale to large problem
sizes. This is based on the fact that Riemannian optimization
algorithm RCGD is essentially based on matrix factorization,
while the convex relaxation algorithms NNM and MNM need
to solve SDP problems, which are known computationally
prohibitive for large-scale problems.

We further study the average relative construction error
of the four algorithms and explore the robustness of the pro-
posed smoothed Riemannian optimization algorithm against
additive noise. We assume the additive noise in the formula-
tion (1) satisfies e; = o - || >, cs b;'himiHaijg o 1<
j < m, where w € C is drawn from the standard complex
Gaussian distribution [12]. We compare the four algorithms
for each level of signal-to-noise ratio (SNR) 1/¢ in the setting
of m = 550, N = K = 10, s = 10, |A| = 3. For each set-
ting, 20 independent trails are performed and the condition of
successful recovery is the same with the one aforementioned.
The average relative construction error in dB against the SNR
is illustrated in Fig. 2. It shows that the proposed algorithm is
robust to the noise and achieves better performance than other
algorithms in the noisy case.

5. CONCLUSION

In this paper, we proposed a novel sparse blind demixing
approach to recover the source signals generated by active
devices without the prior knowledge of channel information,
thereby providing massive low-latency IoT connectivity. To
address the unique challenge of inducing the group sparsity
for multiple source signals with bilinear measurements, we
developed a smoothed Riemannian optimization algorithm
to solve the blind demixing problem. This is achieved by
exploiting the quotient manifold geometry of the product of
complex rank-one matrices to address bilinear constraints,
followed by the smoothed ¢; /¢s-norm to induce group spar-
sity. The simulation results showed that our proposed method
outperforms the existing methods in terms of computational
efficiency and signal recovery performance.
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