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Applications of Neural Networks

[https://www.youtube.com/watch?v=Ipi40cb_RsI]

• Game-playing • Autonomous Vehicle
[https://www.youtube.com/watch?v=0rc4RqYLtEU]
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Neural networks as classifiers

Training
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Handwritten Digits
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Adversarial Examples
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+

• Look like natural examples

• Cause misclassification

Label:5

Label:3



Real word adversarial example
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Adversarial baseball [Athalye, 2017]Physical Adversarial Sticker Perturbations 

for YOLO [Eykholt, 2018]



Carlini and Wanger’s attack (C&W attack) [Carlini, 2017]

• Optimization-based method with carefully designed attack loss (𝐿2)

• Minimize𝑥 𝑥 − 𝑥0 2 + 𝑐 ∙ 𝑓(𝑥, 𝑡0)  s.t. 𝑥0 + 𝛿 ∈ [0,1]𝑝

• 𝑓(𝑥, 𝑡0) = 𝑚𝑎𝑥 −𝜅, 𝑍 𝑥 𝑡0 − 𝑚𝑎𝑥𝑖≠𝑡0 𝑍 𝑥 𝑖 (untargeted 

attack)

• 𝜅 ≥ 0: confidence parameter for transferability

max score of 

other class

score of 𝒕𝟎

prediction of 𝑥

confidence most probable class prediction other than 𝑡0

ground truth label’s probability
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EAD: Elastic-net Attacks to DNNs [Chen, 2018]

• Recall C&W attack: Minimize𝑥 𝑥 − 𝑥0 2 + 𝑐 ∙ 𝑓(𝑥, 𝑡0)  s.t. 𝑥0 + 𝛿 ∈ [0,1]𝑝

• EAD: Minimize𝑥 𝜷 𝑥 − 𝒙𝟎 𝟏 + 𝑥 − 𝑥0 2 + 𝑐 ∙ 𝑓(𝑥, 𝑡0) s.t. 𝑥0 + 𝛿 ∈ [0,1]𝑝

• The advantages of EAD attack(L1 regularizer):

• 𝑥 − 𝑥0 1 = 𝛿 1 is a convex regularizer that encourages sparsity and hence 
transferability in the adversarial perturbation 𝛿

• Craft adversarial images while denoising unnecessary noises towards more 
effective attacks

original C&W attack EAD attack
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Defense of adversarial example
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• Detection approach

• Separate natural examples and adversarial examples

• Manifold-based approach

• Correcting adversarial examples by projection to data manifold

• Gradient masking

• Adversarial training

• Iteratively retrain a DNN while augmenting adversarial examples



MagNet

image X

Detect

is X adversarial 

for any detector? 

Yes

No

Reform
Target

Classifier
Class label y

X is adversarial, reject X
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MagNet

• Detector

• Based on reconstruction error: 𝑥 − ae(𝑥) 2 < threshold, MagNet accepts 
input

• Based on probability divergence: 𝐷𝐾𝐿(𝑃||𝑄) < threshold, MagNet accepts 
input

x

x
ae(x)
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Mutual Information Detector (MID) 

X = f(x)

Y = f(ae(x))

Classifier

Auto-encoder
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𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

𝐻 𝑌 = − ෍

𝑦

log 𝑝 𝑦 𝑝(𝑦)

𝐻 𝑌 𝑋 = −෍

𝑥

𝑝 𝑥 ෍

𝑦

𝑝 𝑦 𝑥 𝑙𝑜𝑔 𝑝(𝑦|𝑥)

Conditional generation



Conditional generation

Alpha-GAN
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Conditional generation

Label  0
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Conditional generation

Label  0
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Alpha-GAN



Jaccard distance

Jaccard distance = 1 −
𝑑(𝑋,𝑌)

𝐻(𝑋,𝑌)

𝑑 𝑋, 𝑌 = 𝐻 𝑌 + 𝐻 𝑋 − 2𝐼(𝑋, 𝑌)

𝐻 𝑋, 𝑌 = 𝐻 𝑌 + 𝐻 𝑋 − 𝐼(𝑋, 𝑌)

where,  X = f(x), Y = f(ae(x)) and   𝐻 𝑌 = − ෍

𝑦

log 𝑝 𝑦 𝑝(𝑦)

classifier Auto-encoder
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Getting threshold

Training data

Testing data

Validation data
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Getting threshold
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Validation data
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Testing data



Getting threshold
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Validation data

Calculating Mutual 
information and 
Jaccard distance

Sorting (ascending)
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Testing data
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Testing data
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Testing data
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Getting threshold
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Testing data



Experimental results—MNIST
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Experimental results—CIFAR10
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Conclusion

• Mutual information is a promising approach to characterize adversarial

subspaces

• We will continue to improve the quality of image generated by 

auto-encoder to strengthen the effectiveness of mutual information 

detector

27


