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Using Appliance-Specific Energy Data
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Obtaining Appliance-Specific Energy Data

Intrusive |
= Expensive

Inconvenient
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Very-High-Rate NILM

= Why very-high-rate data?

= More information, more loads, more applications

= What makes this challenging?
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= |Large amount of data, little time
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Avallable Approaches

= Naive Sampling
= Compression [3,4]
= Event Detection [5,6]

= Compressed Sensing

= Has been proposed by [7]
= We explore alternative ways to implement this method
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Compressed Sensing (CS) [8,9]
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CS: Sparse Vectors
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Using the Load Basis [/]
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Here we extracted
waveforms from the
BLUED dataset [10].




CS: Hardware Realization

Random Projection 1

Random Projection 2

Random Projection 3

Random Projection 4

Random Projection 5
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Our Contribution: Exploring How: Random filtering or

single-channel CS for NILM. demodulation.
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CS: Hardware Realization

|
analog . random Ly sample
|

current salmplfs-j at filter 1 X¢ |m times| ¥ _
—p| Nyquist —L —>| transmit

| per
rate low pass > | eycle |
filter [ I
——————— - I
NILM comparison NILM S Tecover y Y
answer + % prediction | sparse vector [ |receive

© IEEE 2015, from [1]

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA




12

Option 1: Random Filtering [11]

X Riﬂ?eorm Subsample Yy
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Option 2: Random Demodulation [12-14]

Integrate-and-Dump
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UBC
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Outcomes

= Random filtering and demodulation:

= Use lower sampling rate than Nyquist
= Require fewer sampling channels than traditional CS
= Perform better than direct subsampling

= These make very-high-rate NILM methods
more feasible by allowing a more practical
sampling implementation.
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Thank you!
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