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Understanding Energy Use 
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Using Appliance-Specific Energy Data 
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Obtaining Appliance-Specific Energy Data 
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 Expensive 

 Inconvenient Hardware Intensive 

Software Intensive 

Image: “Power Outlet” by edkohler, 

http://flic.kr/edkohler/2634408062. License: 

https://creativecommons.org/licenses/by/2.0/. 

Image: modified from 

“Untitled” by Alex (aka 

“eflon”), 

https://flic.kr/eflon/109

89750835. License: 

https://creativecommo

ns.org/licenses/by/2.0/

. 



Very-High-Rate NILM 

 Why very-high-rate data? 
 More information, more loads, more applications 

 

 What makes this challenging? 
 Large amount of data, little time 
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 Naive Sampling 

 Compression [3,4] 

 Event Detection [5,6] 

 Compressed Sensing 
 Has been proposed by [7] 

 We explore alternative ways to implement this method 

 

Available Approaches 
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Compressed Sensing (CS) [8,9] 
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CS: Sparse Vectors 
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Using the Load Basis [7] 
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Here we extracted 

waveforms from the 

BLUED dataset [10]. 
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CS: Hardware Realization 
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Our Contribution: Exploring 

single-channel CS for NILM. 

How: Random filtering or 

demodulation. 



CS: Hardware Realization 
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Option 1: Random Filtering [11] 
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Option 2: Random Demodulation [12-14] 
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Outcomes 

 Random filtering and demodulation: 
 Use lower sampling rate than Nyquist 

 Require fewer sampling channels than traditional CS 

 Perform better than direct subsampling 

 

 These make very-high-rate NILM methods 

more feasible by allowing a more practical 

sampling implementation. 
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Thank you! 
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