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Motivation and background
Compressed Sensing (CS)

CS system:
• technique for compressed acquisition

y = Ax+ η

▶ x ∈ Rn ⇝ sparse signal (with at most k << n nonzero entries)
▶ A ∈ Rm×n ⇝ sensing matrix (m < n)
▶ η ∈ Rm additive Gaussian noise N(0, σ2)

• reconstruction from few linear measurements (exploiting
signal's sparsity)

Careful design: knowledge of k relevant
• sensing matrix: RIP-k, NSP-k, coherence-k condition
• number of measurements: m = O(k log n/k)
• recovery algorithms: tuning parameters depends on k (OMP,
CoSaMP, Lasso, IRLS, ... )
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Motivation and background
Sparsity estimation

Sparsity: major gap between theory and practice
• CS theory assumption: knowledge of sparsity degree k
• In practice: not always true

▶ time-varying sparsity (spectrum sensing)
▶ spatially-varying sparsity (block-based acquisition of images)
▶ is a signal actually sparse in some basis?

Related literature:
• streaming measurements in CS [Romberg&al.2008]
• sparsity estimation via recovery [Wang&al.2012]
• sparsity estimation from measurements [Lopes2013]

Our contribution: estimate sparsity degree
frommeasurements via sparse randommatrices
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Motivation and background
Sparse sensing matrices

CS system: y = Ax+ η

• x ∈ Rn ⇝ k-sparse signal (with at most k nonzero entries)
• η additive Gaussian noise N(0, σ2)

• A⇝ γ-sparsified random matrix

aij ∼

{
0 with prob. 1− γ

N
(
0, 1

γ

)
with prob. γ.

Sparse (γ = Θ(n−1)) vs dense (γ = Θ(1)) matrices:

+ low computational complexity and memory requirements

+ enable reconstruction with a slight performance degradation

ψ(k) = γk = τ =⇒ m ≥ O
(

k log(n/k)
τ log(1+x2mink/τ)

)
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Sparsity estimation
Noiseless Setting

Maximum Likelihood estimation:

• y = Ax, x is k-sparse
• y ∼ Ber(pk), pk = 1−(1−γ)k

• estimate k from ∥y∥0
(number of nonzeros in y)

=⇒ k̂ML =

⌊
log

(
1− ∥y∥0

m

)
log(1−γ)

⌋

Thm 1: strong consistency

- for fixed k: |̂k− k|/k ≤ O(
√

logm/m)w.p.1.
- for large k,m, n: many regimes of ψ(k) = γk for strong consistency w.p.1.
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Sparsity estimation
Noisy Setting

Sparsity estimation: high computational complexity
• y = Ax+ η, x is k-sparse, η ∼ N (0, σ2)

• y ∼ fk is a mixture of up to 2k Gaussians: intractable

Our approach:
• approximate fk as 2-component Gaussian mixture (2-GMM)

f2−GMM
k (y) = (1− pk)ϕ

(
y|σ2)+ pkϕ

(
y|σ2 +

∥x∥2
2

pk

)
• estimate 2-GMM parameters via Expectation-Maximization
• compute

k̂EM =

⌊
log(1− pk)
log(1− γ)

⌋
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Sparsity estimation
Noisy Setting

Thm 2: 2-GMM approximation error

2-GMM approximates real distribution for large k:
x2mink = Θ(1) =⇒

∥fk − f2−GMM
k ∥Kol ≤ C(ψ(k) + ψ(k)2), C ∈ R, ψ(k) = γk

Summary: Sparse matrices are good
• for recovery [Wang&Wainwright2010]
• for sparsity estimation in noiseless setting
• for sparsity estimation in noisy setting (2-GMM approximation
error is bounded)
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Numerical experiments
Synthetic signals

Effect of noise: ψ(k) = Θ(1)
• minimal SNR = x2mink/σ

2 = 10dB
• mean relative error (MRE) averaged over 400 runs
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Numerical experiments
Synthetic signals

Mean relative error (MRE) of estimated sparsity (k = 1000)
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Numerical experiments
Non-exactly sparse signals

Sparsity defined as the fraction of DCT components above τ
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Numerical experiments
Sparsity estimation for signal recovery

S = {x ∈ R1600, k ∈ {4, ..., 200}}, SNR=30dB
• CoSaMP: dense matrix (γ = 1),m = 4kmax
• EM-Sp/CoSaMP:

▶ Sparse matrix (γ = 8/kmax), kmax measurements, compute k̂;
▶ Dense matrix (γ = 1), acquire new measurements
▶ recover via CoSaMP.

Total measurementsm = min{4kmax,max{10k̂, kmax + 4k̂}}
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Concluding remarks

Sparsity estimation:
• noise-free setting: asymptotic behavior of ML-estimator for
different regimes of CS system parameters;

• noisy setting: sparsity estimation via EM algorithm.
• numerical experiments: synthetic and real data

Future developments: useful tool in several applications
• Adaptive acquisition and sequential recovery
• Model based compressed sensing
• Estimation of support overlap between correlated signals

▶ distributed compressed sensing (JSM-1, JSM-2)
▶ embeddings of Jaccard coefficients for near-duplicates

detection

11/12



Recommended reading

This paper and companion papers:
• C. Ravazzi, S. M. Fosson, T. Bianchi, E. Magli, Signal sparsity
estimation from compressive noisy projections via sparsified
random matrices, Proc. of IEEE International Conference on
Acoustics, Speech, and Signal Processing 2016.

• C. Ravazzi, S. M. Fosson, T. Bianchi, E. Magli, Sparsity Estimation
from Compressive Projections via Sparse Random Matrices,
submitted to IEEE Transactions on Signal Processing, March
2016.

• D. Valsesia, S. M. Fosson, C. Ravazzi, T. Bianchi, E. Magli,
SparseHash: Embedding Jaccard coefficient between support
of signals, submitted to IEEE International Conference on
Multimedia and Expo 2016
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