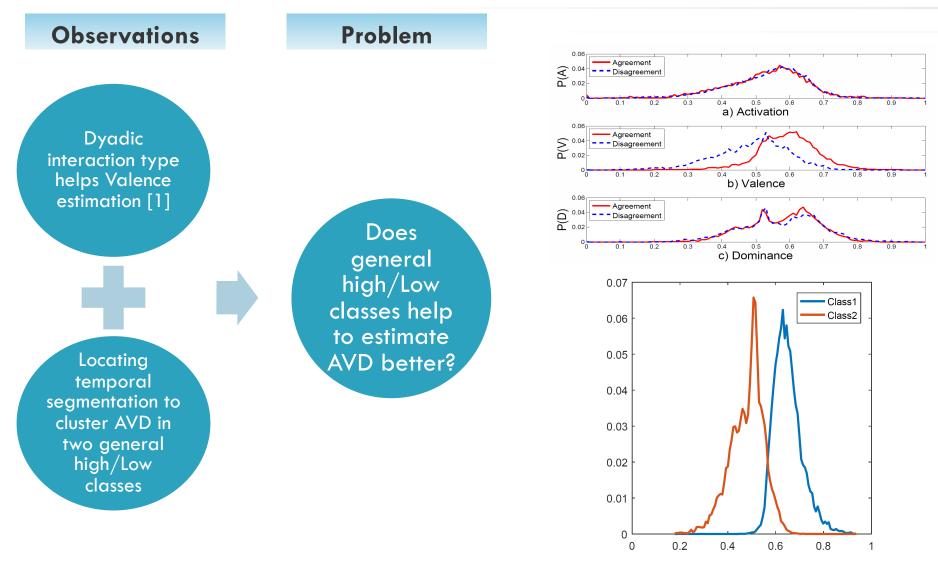


Use of Affect Based Interaction Classification for Continuous Emotion Tracking

Hossein Khaki and Engin Erzin

Multimedia, Vision and Graphics Lab (MVGL) Department of Electrical and Electronics Engineering

42st IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2017 5-9 March 2017 – NEW ORLEANS, USA


Koç University Istanbul, Turkey

Outline

- Related Studies and Motivation
- JESTKOD Database
- GIT-CER system
- Experimental Evaluations
- Conclusion and Future work

Related Studies and Motivation

[1]- H. Khaki and E. Erzin, "Use of agreement/disagreement classification in dyadic interactions for continuous emotion recognition," in INTERSPEECH, 2016.

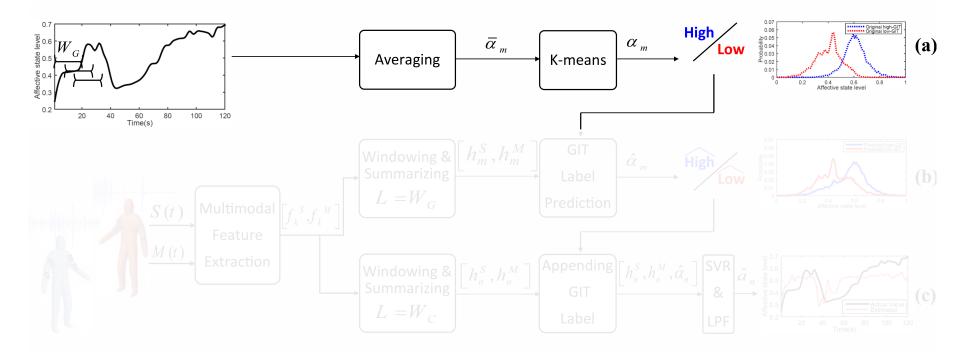
JESTKOD database

- A natural and affective dyadic interactions
- Equipment:
 - A high-definition video recorder
 - Full body motion capture system with 120 fps
 - Individual audio recorders
- 5 sessions, totally 56 agreement and 42 disagreement clips
- In each clips: 2 participants, around 2~4 minutes
- Totally 10 participants
 - 4 female/6 male, ages: 20 25
- Language: Turkish
- Annotation

Valence

Dominance

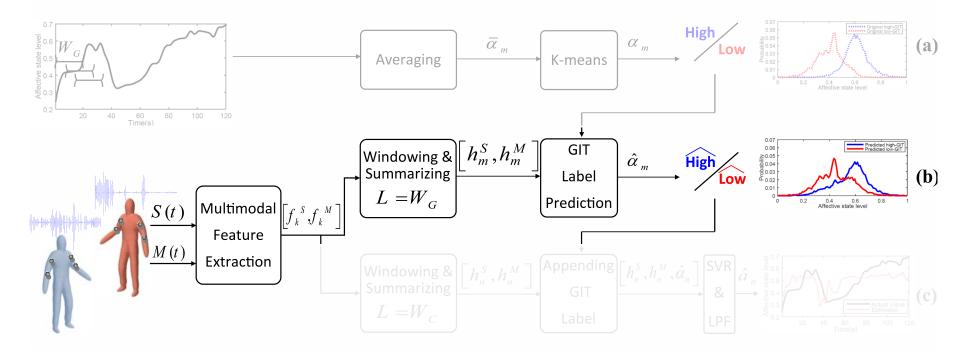
Mean Pearson's correlation between the consensus rating and individual annotations				
Activation	Valence	Dominance		
0.5568	0.5638	0.7369		


Use of Affect Based Interaction Classification for Continuous Emotion Tracking

	Topics in the JESTKOD database			
Pair #				
	Agreement	Num.	Disagreement	Num.
	scenario	clips	scenario	clips
1	Cinema,	13	Football,	13
	World cuisine,		Maths,	
	Holiday resorts,		Game consoles,	
	TV series		PC Games	
2	Football,	13	Geography,	16
	World cuisine,		Holiday resorts,	
	Music,		PC Games,	
	Cinema,		Theatre,	
	Literature		Dance	
3	Cinema,	11	Cinema	17
	Sports,		History,	
	PC Games,		TV series,	
	Music,		Animals,	
	World cuisine		Education	
4	World cuisine,	16	Football,	17
	Holiday resorts,		Cinema	
	Science-fiction,		PC Games,	
	History,		TV series,	
	Theatre,		Literature,	
	Cities		Physics	
5	Cinema,	13	Cinema,	16
	Languages,		Sports,	
	PC Games,		Holiday resorts,	
	Cities,		Nutrition,	
	Game consoles		Musicals	
Total		66		79

The JESTKOD database is available upon request for academic purposes. http://mvgl.ku.edu.tr/databases

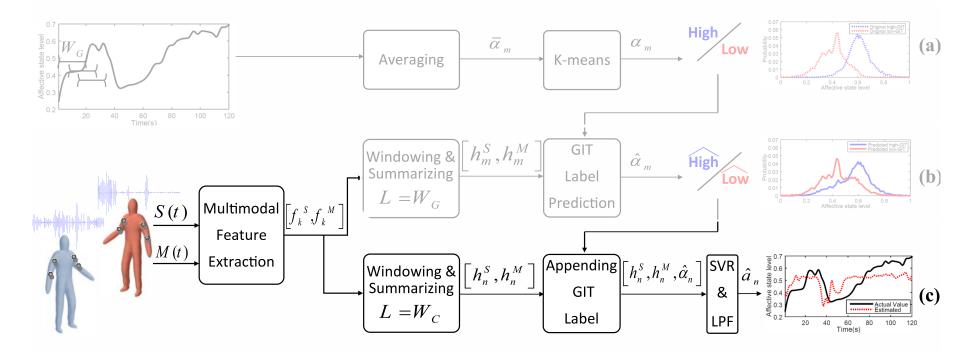
GIT-CER system



- a. Clustering:
 - Temporal segmentation
 - Splitting AVD into two general classes
 - Similar to DIT, Defining General DIT (GIT)

 $\bar{\alpha}_m = \frac{1}{W_G} \sum_{k=1+(m-1)R_G}^{W_G + (m-1)R_G} a_k,$

$$\alpha_m = \mathcal{Q}(\bar{\alpha}_m)$$



- b. GIT Label Prediction:
 - Linear SVM unimodal and multimodal system.

$$\hat{\alpha}_m = \Phi(h_m^S, h_m^M) \quad 8 \le W_G \le 30 \text{ sec}$$

GIT-CER system

• c. Appending GIT label and Continuous Emotion Recognition

$$\hat{a}_n = \Psi(h_n^S, h_n^M, \hat{\alpha}_n) \qquad W_c = 1.5 \text{ sec}$$

Experimental Evaluations (parameters)

Feature extraction:

- **Speech**: 16.66 ms win with 8.33 ms frame shifts \Rightarrow 39D = (E + 12MFCCs) + Δ + $\Delta\Delta$
- **Motion**: $24D = (\varphi, \theta, \psi)$ of the arm & forearm joints with their derivatives

Training and testing strategy:

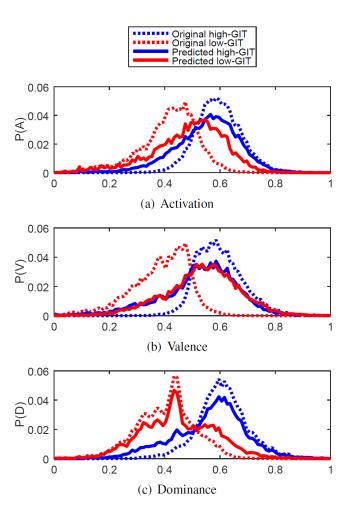
Leave-one-session-out => Speaker independent

Feature Summarization:

 Statistical functions: Adjust the PCA output dimension to preserve 90% of the total variance

Prediction and regression:

- GIT prediction: Linear kernel SVM
- **CER:** RBF kernel SVR
- Performance metric: The average Pearson correlation between consensus ratings and their estimation

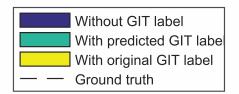

Experimental Evaluations – GIT Prediction

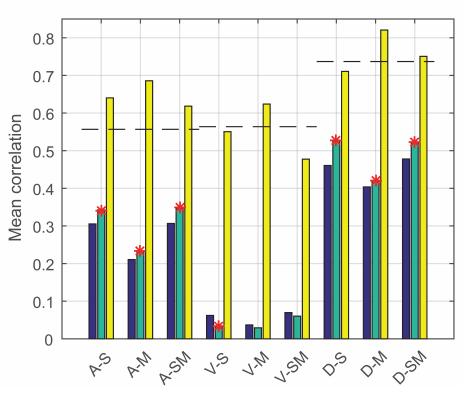
GIT predication phase:

- Search over different $8 \le W_G \le 30$ sec to maximize the statistical difference between predicted high and low GIT
- Statistical difference measure: Kullback-Leibler divergence (KLD)
- GIT prediction from speech and motion

$oldsymbol{D}_{KL}(oldsymbol{P}_{H},oldsymbol{P}_{L})$ / (W _G)				
Activation	Valence	Dominance		
0.31/(13)	0.11/(29)	0.81/(13)		

- > Dominance: Well separated ©
- Activation Medium separated! ^(C)
- ➤ Valence: Not separated ⊗





Experimental Evaluations – Emotion Recognition

Continuous Emotion Recognition

- From Speech, Motion and multimodal speech & motion (SM)
- For Activation, Valence and Dominance
- Observations
 - Multimodal tests have almost always the highest correlation
 - Predicted GIT (green bars) improves dominance and activation
 - Valence regression is always poor (No facial expression data)
 - Yellow bars: Theoretical upper bounds

Star signs indicate the statistically significant (p<0.05) difference between CER without GIT labels and CER with predicted GIT labels

Conclusions and Future work

Conclusions

- Our hierarchical continuous emotion recognition system consist of:
 - Temporal clustering of AVD to form GIT label
 - Predict GIT Label with multimodal feature set
 - Append predicted GIT to multimodal feature for continuous emotion recognition
- GIT labels provide useful discrimination for the activation and dominance attributes in the JESTKOD dataset
- GIT labels introduce side information for CER problem
- Future work
 - Use of affect context, such as GIT, for continuous emotion recognition

Thanks.

išdneziouzsi

