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A natural and affective dyadic interactions 

Equipment: 

A high-definition video recorder 

Full body motion capture system with 120 fps  

Individual audio recorders  

5 sessions, totally 66 agree and 79 disagree clips 

In each clips: 2 participants, around 2~4 minutes 

Totally 10 participants  

4 female/6 male, ages: 20 - 25 

Language: Turkish 

Annotation (Not used in this paper)  

Activation 

Valence 

Dominance  

JESTKOD database 

4/12 



ICASSP 2016 
Hossein Khaki, Elif Bozkurt, Engin Erzin 

Agreement and Disagreement Classification of Dyadic  
Interactions Using Vocal and Gestural Cues 

Agreement/Disagreement Classification  

A two-class dyadic interaction type (DIT) estimation problem  

Input: speech and motion modalities of two participants 

Feature Extraction:  

Speech: 20 ms win with 10 ms frame shifts ⇒ 𝑓Si:  39D = 13MFCCs + Δ + ΔΔ 

Motion:𝑓Mi: 24D =  (φ, 𝜃, 𝜓) of the arm & forearm joints with their derivatives 
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i = 1,2.  
Index of two participants. 
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Agreement/Disagreement Classification  

Utterance Extraction: collect frame level feature vectors over the 

temporal duration of the utterance and construct matrices of 

features 

𝐒𝐩𝐞𝐞𝐜𝐡:  only vocal frames, Fk
Si = 𝑓1

Si , … , 𝑓𝑁S
𝑆𝑖   

𝐌𝐨𝐭𝐢𝐨𝐧: All frames, Fk
Mi = 𝑓1

Mi , … , 𝑓𝑁S
𝑀𝑖   

i = 1,2.  
Index of two participants. 

6/12 



ICASSP 2016 
Hossein Khaki, Elif Bozkurt, Engin Erzin 

Agreement and Disagreement Classification of Dyadic  
Interactions Using Vocal and Gestural Cues 

Agreement/Disagreement Classification (Cont.) 

Two Feature Summarization techniques 

Using statistical functions followed by PCA [1] 

 mean, standard deviation, median, minimum, maximum, range, 

skewness, kurtosis, the lower and upper quantiles and the interquantile 
range. 

Using i-vector representation in total variability space (TVS) [2] 

 GMM models followed by Factor Analysis  

Feature Summarizer 

matrices of features:  𝐹 

𝑓11 ⋯ 𝑓1𝑛
⋮ ⋱ ⋮
𝑓𝑚1 ⋯ 𝑓𝑚𝑛

 

Summarized vector: ℎ 

ℎ1 … ℎ𝑟  
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Agreement/Disagreement Classification (Cont.) 

Dyadic modeling:  

Joint Speaker Model (JSM) 

 

 

Split Speaker Model (SSM) 

 

 

Support  Vector Machine 

 

 

 

 

* SVM(h): A notation to describe an SVM classifier using feature vector h. 

Feature  

Summarizer 

Fk
S/𝑀1

Fk
S/M2

 ℎ𝑘
𝑆/𝑀

 

Feature  

Summarizer 
Fk
S/𝑀1 Fk

S/M2  ℎ𝑘
𝑆/𝑀1 ℎ𝑘

𝑆/𝑀2  

Speech Motion Multimodal 

JSM 𝑆𝑉𝑀 ℎ𝑆  𝑆𝑉𝑀 ℎ𝑀  𝑆𝑉𝑀 ℎ𝑆, ℎ𝑀  

SSM 𝑆𝑉𝑀 ℎ𝑆1 , ℎ𝑆2  𝑆𝑉𝑀 ℎ𝑀1 , ℎ𝑀2  𝑆𝑉𝑀 ℎ𝑆1 , ℎ𝑆2 , ℎ𝑀1 , ℎ𝑀2  
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Experimental Evaluations (parameters) 

Training and testing strategy: Leave-one-clip-out 

Feature Summarizer: 

statistical functions: Adjust the PCA output dimension to 

preserve 90% of the total variance 

i-vector: 128 GMM for TVS and 30 dimensional i-vector. 

SVM: Linear kernel from LibSVM package. 

Performance metric: The average of classification accuracy 

Chance level recognition rate: 49.99% 

Two levels of evaluation:  

Clip level: decision over a whole clip  

Utterance level: decision over a couple of seconds of a clip 
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Experimental Evaluations (clip level) 

Unimodal and multimodal classification accuracy for clip level 

DIT estimation 

 Lowest accuracy: Motion 

i-vector inappropriate for motion 

compare to statistical functions.  
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Method  Accuracy 

JSM: i-vector(Motion) 

JSM: i-vector(Speech) 

JSM: i-vector(Speech+Motion) 

55.74% 

99.18% 

98.36% 

SSM: i-vector(Motion) 

SSM: i-vector(Speech) 

SSM: i-vector(Speech+Motion) 

57.38% 

85.25% 

86.89% 

JSM: statistics(Motion) 

JSM: statistics(Speech) 

JSM: statistics(Speech+Motion) 

82.79% 

83.61% 

86.07% 

SSM: statistics(Motion) 

SSM: statistics(Speech) 

SSM: statistics(Speech+Motion) 

79.51% 

89.34% 

90.16% 
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Experimental Evaluations (clip level) 

Unimodal and multimodal classification accuracy for clip level 

DIT estimation 

 Lowest accuracy: Motion 

i-vector inappropriate for motion 

compare to statistical functions.  

Speech modality outperforms 

motion modality  

Low performance:  

SSM + i-vector 

JSM + Statistical functions 

High performance:  

JSM + i-vector 

SSM + Statistical functions 
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Experimental Evaluations (clip level) 

Unimodal and multimodal classification accuracy for clip level 

DIT estimation 

 Lowest accuracy: Motion 

i-vector inappropriate for motion 

compare to statistical functions.  

Speech modality outperforms 

motion modality  

Highest accuracy: The multimodal 
scenarios except JSM + i-vector!  

Low performance:  

SSM + i-vector 

JSM + Statistical functions 

High performance:  

JSM + i-vector 

SSM + Statistical functions 
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Experimental Evaluations (utterance level) 

DIT estimation for overlapping utterances: 

SSM with statistical functions 

 

 

 

 

*The duration is the total time of dyadic interaction, including silent and speech segments. 

JSM with i-vector  

 

 

 

 Multimodal has the highest performance for short utterances 
Duration >15 sec  Multimodal accuracy > 80% 

Speech and Multimodal have similar curves. 

Motion is not reliable with JSM+i-vector 
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Conclusion 

JESTKOD as A natural and affective dyadic interactions 

JESTKOD: A multimodal database of speech, motion capture and 

video recordings of affective dyadic interactions 

 

Early results on the two-class dyadic interaction type detection 

Joint and split speaker model to estimate the dyadic interaction type 

Accuracy of speech features > Accuracy of motion features 

The multimodal has the highest accuracy over the short utterances. 

 

Future works: 

Studding the relationship between the AVD and DIT 

Using JESTKOD as a rich database for emotion recognition and 

synthesis  
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 Thanks. 
 

 

 

 !?QUESTIONS?! 

For more questions, please, contact to mail: hkhaki13@ku.edu.tr 

 
This work is supported by TÜBİTAK under Grant Number 113E102. 
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i-vector Extraction 

First a GMM models the data distribution: 

𝑃 𝒟 =  𝜔𝑖𝒩 𝒟; 𝜇𝑖 , 𝜮𝒊

𝑀

𝑖=1

 

𝒟: The speech feature space 

ωi, μi, and Σi: The weight, mean vector, and covariance matrix of 

the i'th Gaussian mixture 

M: The total number of mixtures 

Then Factor Analysis reduces the dimension: 

 𝜇 = 𝑚 + 𝑇𝑤, 

𝜇 = μ1
𝑇 , μ2
𝑇 , … , μM

𝑇
𝑇
: The super-vector  

𝑚: The Universal Background Model (UBM), 

𝑇: The TVS basis, 

𝑤: The reduced feature known as i-vector 

 


