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ABSTRACT

While significant work has been conducted to perform source cam-
era model identification for images, little work has been done specif-
ically for video camera model identification. This is problematic
because different forensic traces may be left in digital images and
videos captured by the same camera. As our experiments in this
paper will show, a system trained to perform camera model identifi-
cation for images yields unacceptably low performance when given
video frames from the same cameras. To overcome this problem,
new systems for identifying a videos source must be developed. In
this paper, we propose a deep learning based system for determining
the source camera model that captured a digital video. To do this, we
use a convolutional neural network to produce camera model iden-
tification scores for small patches taken from video frames. These
patches are chosen by a patch selection system that obtains patches
from several appropriate frames temporally distributed throughout
the video. Forensic information obtained by the CNN is provided
to a fusion system, which combines it to produce a single, more
accurate identification result. Through a series of experiments, we
evaluate several system design choices and show that our system can
achieve 95.9% video camera model identification accuracy.

Index Terms— Deep learning, convolutional neural networks,
multimedia forensics, camera model identification

1. INTRODUCTION

Multimedia signals, such as images and videos, are used in a variety
of scenarios where their origin and integrity are of critical impor-
tance. Common examples of this are criminal investigations, legal
proceedings, news reporting, and strategic decision making by both
governmental and business organizations. As a result, determining
information about the source of multimedia signals is an important
task in multimedia forensics [1]. Forensic techniques capable of
identifying information about a signal’s source can be used to verify
a multimedia file’s origin or to identify source inconsistencies within
the multimedia file that could be indicative of a forgery [1, 2].

Significant research has been done to develop forensic algo-
rithms to determine the model and manufacturer of an image’s
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source camera. These algorithms utilize traces left by a wide variety
of physical and algorithmic components in a camera’s processing
pipeline. Forensic camera model algorithms have been designed that
leverage traces left by demosaicing [3, 4, 5, 6, 7, 8], sensor noise
and other noise statistics [9, 10], JPEG header information [11],
and prediction residuals [12, 8]. More recently, approaches that
use convolutional neural networks to identify an image’s source
camera model have gained significant attention [13, 14, 15, 16].
These algorithms have led to recent advances in the detection and
localization of image splicing using source camera model inconsis-
tencies [17, 18] and open set camera model identification [19, 20].

While substantial work has been done to determine the model
and manufacturer of an image’s source camera, little to no work has
been done to perform this same task for digital videos [2]. The ma-
jority of existing work has focused on using sensor fingerprints to
identify a video’s specific source device [21, 22, 23, 24, 25, 26]. This
is problematic because, as we experimentally demonstrate in this pa-
per, a camera model identification algorithm trained on images is
likely unable to accurately determine the source of videos from the
same set of camera models! This is likely because a camera employs
different algorithmic components in its processing pipeline for im-
ages and videos (such as different compression algorithms, different
demosaicing and/or post-processing algorithms that produce differ-
ent image vs. video frame sizes, etc.), thus leaving behind different
forensic traces. Since the amount of video content has grown dra-
matically, with the video sharing site Youtube alone containing over
1 billion hours of video uploads [27], it is critically important for
forensic researchers to develop source camera model identification
approaches that can operate on video.

When creating a video camera model identification system,
researchers must confront several issues that they do not face for
image-based systems. For example, do different frame types used
during video coding affect forensic traces used for camera model
identification? If so, how should this be taken into account when
designing and training a video-based identification system? Many
image-based systems are able to make reliable source model deci-
sions on the basis of a single M⇥M image patch. Is this possible in
videos or will the accuracy obtained using a single patch be insuffi-
ciently low? If forensic information from multiple patches is needed,
where in a video should these patches be gathered from? Because
of the size of digital videos, it is computationally expensive to use
all patches in a video. How many patches are needed to achieve
acceptable identification performance? Additionally, what is a good
fusion strategy to combine information from multiple patches?

In this paper, we propose a new deep learning based system to
perform source camera model identification for digital videos. Our
proposed system operates by using a CNN to extract information
about a video’s source camera model from a set of patches extracted
from different video frames. These patches are chosen by a patch se-
lection system that obtains patches from several appropriate frames



temporally distributed throughout the video. Forensic information
obtained by the CNN is then provided to a fusion system, which
combines it to produce a single, more accurate identification result.

Through a series of experiments, we determine optimal design
parameters for each system component and demonstrate that our pro-
posed video camera model identification system can achieve an av-
erage accuracy of 95.9% when evaluated on a database of videos
from 20 different camera models. Additionally, we experimentally
demonstrate that 1) video camera model identification is more accu-
rate when performed on I-frames than P-frames, 2) fusing unnormal-
ized CNN class activations for each patch outperforms other strate-
gies such as majority voting, and 3) significantly higher accuracy is
achieved when patches are selected from multiple, temporally dis-
tributed frames as opposed to from within a single frame.

2. PROBLEM FORMULATION

In this paper, we propose a system that analyzes a digital video and
determines the model and manufacturer of the camera that captured
it. To accomplish this, we make use only of the video itself and the
forensic traces intrinsically embedded in it by its source camera. We
do not rely on metadata or any other source of extrinsic information.

For the purposes of this work, we assume videos are captured by
a camera model in a set of known camera models M. Furthermore,
we assume that all videos are directly encoded by the camera using
H.264, MPEG-4, or a similar video coding standard. Videos are not
edited, recompressed, transcoded, or otherwise post-processed.

While little research has been dedicated to identifying the source
camera model for digital videos, camera model identification is a
well studied problem for images. Techniques that perform camera
model identification for images make use of traces left by several
components within a camera’s image processing pipeline including
traces left by algorithmic components such as demosaicing [4, 6, 3],
JPEG compression [11], and white balancing [28], or by physical
components such as a camera’s sensor [9], CFA [6, 3], lens [29], etc.

Since most cameras are capable of capturing both images and
videos, it may seem reasonable to identify a video’s source camera
model using a forensic technique developed for images and trained
on images from the same set M of possible camera models. Un-
fortunately, this approach is very likely to fail, most probably due
to important differences between the image and video processing
pipelines within the same camera.

To demonstrate this, we conducted an experiment in which we
used an image-based camera model identification system to deter-
mine the source camera model of both images and video frames
captured by the same set of devices. To perform this experiment, we
used the CNN-based camera model identification system proposed
by Bayar and Stamm in [15]. This system was trained on 400,000
patches of size 256⇥256 extracted from images captured by 10 dif-
ferent camera models1. It was then used to identify the source cam-
era model of 256 ⇥ 256 pixel patches taken from a separate testing
set of images as well as from video I-frames and P-frames captured
by the same set of camera models.

The results of this experiment are shown in Table 1. While the
camera model identification accuracy obtained for image patches is
high, the accuracies obtained for patches from video I- and P-frames
are unacceptably low. This suggests that image-based camera model
classifiers, and their accompanying feature extractors, cannot be di-
rectly transferred to video.

1Camera models used for this experiment were: Canon SX530, Canon
SX610, Canon SL1, Fujifilm XP80, Nikon S33, Nikon S7000, Samsung S5,
Samsung S7, Olympus TG-860, Panasonic FZ2000.

Table 1. Single patch source camera model classification accuracy
for 10 camera models, with a classifier trained on image patches.

Input Patch Type Accuracy

Image 98.20%
Video (I-frame) 7.54%
Video (P-frame) 4.16%

The reason for this lack of transferability is likely due to differ-
ences between the image and video processing pipelines within the
same camera. One important difference can be seen in the difference
between the dimensions of an image and a video frame captured by
the same camera. Though the same sensor is used to produce both,
images from a camera are substantially larger than video frames,
suggesting that sensor readings undergo different processing during
the image and video frame formation process. Another important
difference lies in how images and videos are encoded. While images
are typically JPEG compressed, modern video coding schemes, in-
cluding H.264 and MPEG-4, take advantage of temporal redundan-
cies to reduce the size of a video for storage or transmission. This
can result in different compression traces and can have different ef-
fects on other forensic traces left by the camera.

Because video coding plays a factor in our camera model iden-
tification system, we briefly review common components of modern
video compression. To exploit temporal redundancy, video frames
are assigned one of three different frame types; I-frames, P-frames,
and B-frames. Intraframes, or I-frames, are encoded independently
of any other frame using a process similar to JPEG compression.

The remaining frames are designated as either a predicted-frame
(P-frame), or a bidirectional-frame (B-frame). P-frames are pre-
dicted from a previous I or P frame, known as an anchor frame. To
encode a predicted frame, blocks in the anchor frame are moved to
recreate an approximation of the desired frame. The movement of
these blocks, and the difference between the predicted frame and
current frame are both encoded so that the frame can be recovered.
A similar process is used for B-frames, but with the use of previous
and future anchor frames. B-frames are not available in all profiles
of many video codecs, so they are not considered in this work.

3. PROPOSED SYSTEM

To perform video camera model identification, we propose a new
deep learning based system. Our proposed system obtains local in-
formation about the source camera model from appropriate locations
throughout a video, then combines this to produce a single camera
model decision.

Local information is gathered by using a CNN to extract cam-
era model information from non-overlapping M ⇥M pixel patches
taken from several frames throughout a video. This local infor-
mation is then passed to a fusion system where it is combined to
produce a single camera model decision m̂. Since examining all
patches throughout a video is computationally prohibitive, we em-
ploy a patch selection system to identify a small number of patches
N that are provided to the CNN for analysis. This system chooses
F frames suitable for patch extraction, the selects a N/F patches
from each frame that are passed to the CNN. Detailed information
about each of these three subsystems (our CNN, fusion, and patch
selection systems) is provided below.

3.1. Camera Model ID CNN

To extract local camera model information, we use a modified
version of the MISLnet CNN architecture proposed by Bayar and



Stamm [30]. MISLnet is composed of a constrained convolutional
layer of three filters, followed by 5 convolution blocks (convolution,
batch normalization, activation, then max pooling), then two fully-
connected blocks (matrix multiplication followed by activation), and
finally, a fully-connected layer. Full implementation details can be
found in [30].

To adapt this CNN for video camera model identification, we
make several modifications to its architecture. First, we choose an
input patch size of 256⇥ 256. To adapt to color patches, we remove
the constraint on the first convolutional layer, and increase the num-
ber of first layer filters from 3 to 6. We then assign each neuron in
the last fully connected layer to a camera model in M.

To train our CNN, we use a softmax layer on these neurons, and
minimize the cross-entropy loss between this softmax and a one-hot
vector representing the true class of the training patch. To perform
fusion, we remove this softmax, and use the vector of output neurons
� 2 R|M|, where �k corresponds to neuron value associated with
the kth camera model. While the softmax activation is important for
training, it is constrained to being non-negative, and of normalized
magnitude. These properties can be limiting when comparing and
fusing multiple patches. We find that � is a much more expressive
representation in the context of fusion.

In training this CNN, we experimented with the relationship be-
tween frame compression scheme and patch-level accuracy. Specif-
ically, we will show that training on only I-frames or only P-frames
reduces the model’s generality and accuracy. We find the best results
when training on a balance of I-frames and P-frames. By ensuring
scene diversity in our training videos, we are able to treat temporally
separated frames as distinct training samples. This allows us to
increase the data volume while minimizing the risk of redundancy.

3.2. Fusion

While the CNN described in Section 3.1 could be used to perform
camera model identification on the basis of a single patch, the ac-
curacy of single-patch decisions is not high enough to reliably clas-
sify a video. To overcome this, we propose increasing our system’s
camera model identification accuracy by fusing information that the
CNN has extracted from multiple patches within a video.

Our fusion system accepts as inputs the unnormalized neuron
activation vector �n, where �n denotes the activation vector from
the nth patch. It combines these activation vectors and chooses a
camera model m̂ 2 M according to the fusion rule

m̂ = argmax
k

NX

n=1

f(�n, k), (1)

where f(·) is a voting function that adjusts the way in which each
activation vector contributes to the decision.

In this work, we consider three different voting functions. The
first voting function is given by the softmax function

f1(�, k) =
e�k

P
` e

�`
. (2)

This voting scheme is such that each patch is alloted one vote in total,
which can be divided across all classes. This allows each class to
receive a fraction of a vote, with the condition that the sum across all
classes is equal to one. Each patch is equally weighted, but patches
that are indecisive spread their vote across multiple classes.

The second voting function is given by

f2(�, k) = (argmax
`

(�`) = k), (3)

where (·) is the indicator function. This function allows each patch
to vote for only one class, with all votes counting the same. With this
scheme, fusion becomes a simple majority vote across all patches.

The third voting function we consider,

f3(�, k) = �k, (4)

selects the kth unnormalized activation from �. This allows each
patch to vote unequally for all camera models. Each patch may vote
for each class, positively or negatively, with as much weight as it
wants. With this voting scheme, patches can have negative weight
against classes they want to reject, and are able to indicate how con-
fident they are in one or more class with respect to other patches.

3.3. Patch Selection

While intuition suggests that more patches will result in a more ac-
curate decision, and therefore a better system, the system’s compu-
tational cost is improved when using fewer patches. Furthermore, to
be useful to investigators, our system must be able to operate on short
videos with a limited number of available patches. In light of this,
our selection system uses a limited number of patches for fusion.

We observe that the accuracy of our CNN is higher when eval-
uating I-frames than when evaluating P-frames, so our patch selec-
tion process begins with selecting only the I-frames from a video.
From these, we select F frames at random. These frames are divided
into non-overlapping patches, and from these patches, P are chosen
from each frame. Activations are extracted from these F ⇥ P = N
patches, using our CNN. These activations are then fused, and a de-
cision is made according to (1).

Our experiments suggest that activations of patches within the
same frame are more correlated than those that are temporally sepa-
rated. As a result, we find that for a constant N , accuracy increases
as F increases. Therefore, F should be maximized, limited by the
scene redundancy.

4. EXPERIMENTAL RESULTS

We performed a series of experiments in order to determine optimal
design choices, and to evaluate our system’s performance. We 1)
evaluated the effect that frame type has on our feature extractor, dur-
ing both training and classification, 2) compared fusion functions,
and their relative effect on performance, and 3) evaluated the effects
of patch quantity and frame diversity to determine an appropriate
patch selection strategy.

To do this, we created a database of videos from 20 camera mod-
els. We collected over 250 videos, from each of these camera mod-
els2. Each video is approximately 5 seconds in duration. Videos
were captured using each camera’s default settings, in a variety of
lighting and scene conditions. All videos were encoded by their
source camera according to the H.264 or MPEG-4 video encoding
standard, and no video was edited or re-encoded.

We divided the videos from each camera model into separate
training sets and testing sets, resulting in 5,962 total training videos
and 650 total testing videos. A database of 320,880 I-frame patches
was created from the set of training videos by selecting three I-
frames from each video, dividing those frames into 256 ⇥ 256
patches, and labeling each patch with the true camera model. This
process was repeated to create a dataset of 35,280 I-frame patches

2Camera models used for these experiments are: iPhone 8+, Asus Zen-
fone 3 Laser, Canon SL1, Canon T6i, Canon SX530, Canon SX610, Fujifilm
XP80, Google Pixel 1, Google Pixel 2, Huawei Honor 6x, Kodak Ektra, LG
Q6, LG X Charge, Moto G5+, Nikon s33, Olympus TG-860, Samsung J7
Pro, S7, Samsung J5-6, Sony Xperia L1



Table 2. CNN accuracy evaluating I-frames and P-frames condi-
tioned on training set.

Training frame type I P I+P

I-frame Accuracy 73.5% 42.9% 75.3%
P-frame Accuracy 54.5% 58.9% 70.3%

Table 3. Single frame accuracy of tested fusion techniques

Fusion function f1 f2 f3

Accuracy 91.0% 92.1% 92.6%

from the set of testing videos, and two more datasets comprising
P-frame patches, with 320,880 and 35,280 patches from the training
and testing sets respectively.

We used the following parameters when training all of our
CNNs. Networks are trained for 26 epochs on batches of 40 patches
with a learning rate of 0.001 halved every two epochs. Training is
performed by Tensorflow on an Nvidia Gforce GTX 1080Ti GPU.

Experiment 1: To determine the effect that frame type has on our
feature extractor, we compared the use of different frame types in
both training and single-patch classification. We trained our net-
work three times, creating three different models, for comparison.
One model was trained on the dataset of I-frames described above,
another on the dataset of P-frames, also described above. The third
model was trained using both the I-frame and the P-frame datasets.
Each model was then used to classify patches in the I-frame testing
set, and patches in the P-frame testing set.

The results of this experiment are shown in Table 2, which enu-
merates the accuracy of each CNN on each frame type. From these
results, we can see that the greatest accuracy across both frame types
is achieved by the model trained using both I- and P-frame datasets.
This suggests that the diversity of training frame type helps the CNN
learn better forensic feature extractors. We also note that this model
achieved 5% greater accuracy when classifying I-frames as com-
pared to P-frames. This shows that to achieve higher accuracy, our
system should only utilize I-frames for extracting source camera
model information. Finally, we note that the highest single-patch
identification accuracy that our CNN achieved was 75.3%. While
our frame type analysis has helped us identify conditions that maxi-
mize our CNNs performance, these results suggests that relying on a
single patch identification system alone (as is often done for digital
images) is unlikely to yield strong enough performance for video.

Experiment 2: Next, we conducted an experiment to evaluate the
performance of the different voting functions used in our fusion ap-
proach. To determine which voting scheme was best suited for video
camera model identification, we performed frame-level fusion in this
experiment using a variety of different voting schemes. We com-
pared the three different fusion functions, f1, f2, and f3, as de-
scribed in Section 3.2.

Using the CNN trained on both I and P frames, as described in
the previous experiment, activations were collected from all 28 non-
overlapping patch in one randomly selected I-frame from each of the
650 videos in the testing set. These activations were fused using each
candidate voting function with our fusion system. Table 3 shows the
frame-level fusion accuracy using each proposed voting function.

In Table 3 we see that function f3, which allows each patch
to vote for each class with any weight, performs frame-level fusion
with 92.6% classification accuracy, and is the voting scheme which

Fig. 1. Whole video classification accuracy when fusing P patches
from each of F frames.

best combines the information present in the activation vectors. This
suggests that forcing all patches to have the same number of votes is
worse than allowing each patch to vote according to it’s own relative
confidence. We note that our chosen approach, f3, outperforms the
commonly used majority vote strategy, described by f2.

Experiment 3: With a CNN and fusion technique fixed, we use
patch selection to increase the quality of our system’s video-level
decision. To investigate the benefits of our patch selection process,
we evaluated our system’s accuracy in relation to the temporal diver-
sity of the selected patches.

For each video in our testing database, we selected F I-frames
and divided them into patches. P of these patches were then selected
from each frame, and analyzed using our patch CNN. The activations
from these patches were then fused to make a decision, using f3 for
f in (1). Fig. 4 shows the accuracy for various P and F values.
For example, our system correctly classified 95.8% of patches when
fusing 2 patches from each of 6 frames.

Most notably, Fig. 4 shows that using a constant number of total
patches and increasing the number of frames tends to result in im-
proving accuracies. Using 6 patches from 1 frame (P = 1, F = 6)
leads to 90.8% accuracy, but using 2 or more frames, while keeping
the number of total patches constant, increases the classification ac-
curacy by roughly 2%. This figure also shows that with the fusion
of only 8 patches (P = 2, F = 4), we achieve over 94% accuracy.
In contrast, using all 28 available non-overlapping patches from a
single frame resulted in only 92.6% accuracy. These results suggest
that temporally diverse information is important for performing ac-
curate camera model identification. Over 95% accuracy is achieved
using as few as 12 patches with enough temporal frame diversity.

The results of this experiment show that with proper frame and
patch selection, a video’s source camera model can be identified with
high accuracy.

5. CONCLUSION

In this work, we proposed a method for performing video camera
model identification. The proposed approach consists of a CNN that
outputs identification scores from small patches in a video, and a
strategy to fuse scores from multiple patches in an intelligent man-
ner. We performed a series experiments that demonstrate the pro-
posed approach achieves high accuracy (>95%) on a set of 20 cam-
era models. Experiments also show that the choice of frame type for
both training and analysis has significant impact on system perfor-
mance, as well as the choice of fusion and patch selection strategies.
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