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Abstract
Due to the grow of modern dataset size and the desire to harness comput-

ing power of multiple machines, there is a recent surge of interest in the design
of distributed machine learning algorithms. However, distributed algorithms
are sensitive to Byzantine attackers who can send falsified data to prevent the
convergence of algorithms or lead the algorithms to converge to value of the
attackers’ choice. Our novel algorithm can deal with an arbitrary number of
Byzantine attackers.

Introduction

Figure 1: DML

Figure 2: DML with Byzantine attack

• The design of distributed op-
timization attracted recent re-
search interests [1, 2, 3] due to:
– dataset is too big to fit into
one machine;
– to harness the computing
power of multiple machines.

• These bring security issues:
– a worker can produce arbi-
trary output;
– a worker could be a Byzan-
tine attacker.

• Recent work [4, 5] can deal
with up to half of workers that
are Byzantine workers.

Goal : Propose a new robust distributed gradient descent algorithm
that can converge with arbitrary number of Byzantine workers.

Model

•Goal:
θ∗ ∈ arg min

θ∈Θ
F (θ) , E[f (X, θ)]. (1)

•Approximate goal:

min
θ∈Θ

1

N

N∑
i=1

f (Xi, θ). (2)

•Model for typical distributed optimization:
– m workers, each has a subset of data can compute:

∇f (j)
(θt−1) =

1

|Sj|
∑
i∈Sj
∇f (Xi, θt−1), (3)

– one server computes:

θt = θt−1 − η
1

m

m∑
i=1

∇f (j)
(θt−1) (4)

• Server receive data with Byzantine attacks:

g
(j)
t (θt−1) =

{
∇f (j)

(θt−1) j /∈ Bt
? j ∈ Bt

, (5)

Existing Work
Comparing data received from all workers among themselves:
• [4] computes s(i) =

∑
j ‖g(i)−g(j)‖2 for allm workers, where g(j)

belongs to m − p − 2 closest vectors to g(i), then chooses the g(i)

which has the smallest s(i);
• [5] uses geometric median of means of the gradients. At iteration
t− 1, the update gradient is

Ak = med

1

b

b∑
j=1

g
(j)
t (θt−1), . . . ,

1

b

b∑
j=n−b+1

g
(j)
t (θt−1)

 (6)

Our Proposed Algorithm
Comparing data received from all workers with server:

• Server computes a gradient∇f (0)
(θ) with a small subset of data;

• Server compares each g(j)(θ) with ∇f (0)
(θ), accepts the one that is

close to∇f (0)
(θ) and rejects the one that is far away;

•Average all accept gradient and∇f (0)
(θ) for update.

Algorithm
Algorithm Iteration t ≥ 1
Parameter server:
Initialize: Randomly selects θ0 ∈ Θ;randomly selects S0;
1: Broadcasts the current model parameter estimator θt−1
to all working machines;

2: Computes∇f (0)
t (θt−1) using S0;

3: Waits to receive all the gradients from the m machines;

Let g(j)
t (θt−1) denote the value received from machine j;

4: Compares g(j)
t (θt−1) with∇f (0)

t (θt−1);If

‖ g(j)
t (θt−1)−∇f (0)

t (θt−1) ‖≤ ξ1 ‖ ∇f
(0)
t (θt−1) ‖,

the server accepts it and sets it to be q(l)
t (θt−1);

5: Assume there are k acceptable value, then

G(θt−1)← 1
k+1

(∑k
l=1 q

(l)
t (θt−1) +∇f (0)

t (θt−1)
)

;
6:Updates θt← θt−1 − ηG(θt−1);
Working machine j:

1: Computes the gradient∇f (j)
(θt−1);

2: If machine j is honest,

it sends∇f (j)
(θt−1) back to the server;

If machine j is compromised,
it sends the value determined by the attacker;

Table 1: Proposed algorithm

Convergence Analysis

Main idea
• ∇f (0)

(θ) is a good estimate of∇F (θ);

•All accepted gradients are close to∇f (0)
(θ) due to the algorithm;

•G(θ) is a good estimate of∇F (θ).

Details
Assumption 1. The population risk function F : Θ→ R is L-strongly
convex, and differentiable over Θ with M -Lipschitz gradient.

Assumption 2. There exist positive constants σ1 and α1 such that for
any unit vector v ∈ B, 〈∇f (X, θ∗), v〉 is sub-exponential with σ1 and
α1, that is,

sup
v∈B

E[exp(λ〈∇f (X, θ∗), v〉)] ≤ eσ
2
1λ

2/2,∀|λ| ≤ 1/α1,

where B denotes the unit sphere θ : ‖θ‖2 = 1.
Assumption 3. There exist positive constants σ2 and α2 such that
for any θ ∈ Θ with θ 6= θ∗ and any unit vector v ∈ B, 〈h(X, θ) −
E[h(X, θ)], v〉/ ‖ θ − θ∗ ‖ is sub-exponential with σ2 and α2, that is,

sup
θ∈Θ,v∈B

E
[

exp

(
λ〈h(X, θ)− E[h(X, θ)], v〉

‖θ − θ∗‖

)]
≤ eσ

2
2λ

2/2,∀|λ| ≤ 1

α2
.

Assumption 4. For any δ ∈ (0, 1), there exists an M ′ = M ′(δ) such
that

Pr

{
sup

θ,θ′∈Θ:θ 6=θ′
‖∇f (X, θ)−∇f (X, θ′)‖

‖θ − θ′‖
≤M ′

}
≥ 1− δ

4
.

Lemma 1. For an arbitrary number of attackers, the distance between
G(θ) and∇F (θ) is bounded as

‖G(θ)−∇F (θ)‖ ≤ (1 + ξ1)‖∇F (θ)−∇f (0)
(θ)‖

+ ξ1‖∇F (θ)−∇F (θ∗)‖,∀θ.
(7)

Theorem 1. Under above assumptions, regardless the number of at-
tackers, the probability at least 1− δ that

‖θt − θ∗‖ ≤ (1− ρ)t‖θ0 − θ∗‖ + (2η∆1 + 2ηξ1∆1)/ρ,

in which ρ = 1−
(√

1− L2

4M 2 + 4∆2η + ηξ1(4∆2 + M)

)
, and

∆1 =
√

2σ1

√
(d log 6 + log(3/δ))/|S0|, (8)

∆2 =
√

2σ2

√√√√d log 6 + d log(M∨M
′

σ2
+ 0.5d log(

|S0|
d ) + log(3

δ) + log(r
√
d)

|S0|
.

(9)

Numerical Results
Focus on Yi = XT

i θ
∗ + εi, i = 1, 2, · · · , N. d = 20. N = 10000.

m = 100. |S0| = 50. ξ1 = 0.975. θ∗ i.i.d.∼ N (0, 4). Xi ∼ N (0, 16)

Figure 3: Inverse attack.

Figure 4: Random attack.

Conclusions

• Proposed a robust gradient descent algorithm that can tolerant an
arbitrary number of Byzantine attackers

• Proposed algorithm converges to the true value

• Provided numerical examples to illustrate the performance of the
proposed algorithm and compared it with those of other algorithms.
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