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Motivations The Proposed Pipeline

Fine-grained objects usually present some fixed parts which can be used to distinguish between The proposed method takes birds as examples, but not limited in birds. For example, one likes the collar and sleeves of a coat but not the
different species. Most fine-grained categorization and retrieval methods build their algorithms on| | other parts, which can be quite a common situation of online-shopping. Out pipeline consists of 2 parts: Part-specific image encoding and
this observation. However, the visually similarity of a part carries some correlations between retrieval. Our pipeline consists of 2 steps: Part-specific image encoding and retrieval.

different species. These correlations has helped biologists exploring the evolution of a part and Stagel: Part-specific Image Encoding 1 Stage2: Image Retrieval

cross-species behavioral similarities. As shown in this Figure, birds from different species with R e e e B e S s S
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e B of them are gulls and they are both sea birds.
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layer take part from original images. And the taken parts have reasonable size of the receptive
field (RF) which can be adjusted automatically and ensure there is less overlaps between different
parts. As a comparison, a receptive field of a part in conv5 layer of Alexnet has a size of 163.
Compared to its input size 224, the receptive field is too large and may lead to many overlaps,
which is not suitable for our task.

We use 2 networks to encode an image. A localization network trained using the bird dataset gives part localizations of query images. Then
a novel geometry-constrained part pooling layer extract masked part images and feed them into the Image encoding network. Notice that
the encoding network has a binary layer, generating a kind of binary codes together with deep features for all parts. This benefits the final
retrieval which we will detailed later.

In our .method, the RF of each part is ad]usted§ Part-based Retrieval
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every part and find the k-nearest neighbor parts for Give both the binary codes and deep codes generated by the Our ranking function is defined as follows. Suppose x = {x"1,x
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We test our method on CUB200-2011 bird dataset which is a challenging fine-grained dataset. §ov 2y = —
To evaluate the performance of our scheme, we need to define a list of classes for each part
based on the similarity between the corresponding parts. In this paper, we show evaluations on .
three parts: chest, tail, and wing. We manually generate 3 such class lists for these parts. We Quantitative A“al?'SiS )
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Top k ranked results for different parts- ~of-interest with one row per query. We show correctly In Table 1, we show results evaluating the advantages of our part-pooling layer in combination with the can be straightforwardly extended to other fine-
retrieved instances in green and incorrect ones in red. species d1vers1ty ranking function. grained retrieval applications.




