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Mobile Data Explosion

Ref: Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 

2015–2020 White Paper
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Cloud-RAN Architecture

 Cloud-Radio Access Network is a promising

Ref: Y Shi, J Zhang, KB Letaief, “CSI Overhead Reduction with Stochastic 

Beamforming for Cloud Radio Access Networks”, ICC 2014
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Motivation

 To fully exploit cooperative gain in C-RAN, full

channel state information (CSI) is required. 

– Challenging to obtain full CSI in large and dense 

networks 

 Power minimization problem with probabilistic

Quality-of-Service (QoS) requirements:

– Practical but hard to obtain optimal solutions
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Contributions

Challenges Solution

(1) Challenging to obtain full 

CSI

(1) Compressive CSI acquisition 

to exploit sparsity of large-scale 

fading coefficients

(2) Hard to provide good 

approximation to the 

probabilistic QoS constraints?

(2) DC approximation to the 

probabilistic constraints, which 

provides optimality guarantee. 
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Notations

 𝐾 single-antenna mobile 

users (MUs).

 𝐿 multi-antenna remote 

radio heads (RRHs).

 𝑙-th RRH is equipped with 𝑁𝑙

antennas.

 𝑙-th RRH to 𝑘-th MU:

– ℎ𝑘𝑙: channel gain; 𝑣𝑙𝑘: beamforming 

vector.
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 For MU 𝑘: 

– 𝑛𝑘: additive Gaussian, 𝑠𝑘: 

encoded data symbol. 

– 𝒉𝑘 = 𝒉𝑘1
𝑇 , 𝒉𝑘2

𝑇 , … , 𝒉𝑘𝐿
𝑇 𝑇

, 

𝒗𝑘 = 𝒗𝑘1
𝑇 , 𝒗𝑘2

𝑇 , … , 𝒗𝑘𝐿
𝑇 𝑇

– 𝒗𝑘 = 𝑝𝑘𝒖𝑘 , 𝒖𝑘

direction, 𝑝𝑘 power, 𝒖𝑘

determined in advance: 

zero-force beamforming.     

Notations
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Transmit Power Minimization

Probabilistic QoS constraints: 

SINR formula: 

Power minimization problem: 
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Compressive CSI Scheme

 Observation: channel links of 

RRH and MU that are far 

away have very minor 

contribution on system 

performance.

 Only select channel links that 

have greater contribution.
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Compressive CSI Scheme

 Assumption: 

– Statistical information for all channel links are available 

– Can accurately track large scale fading coefficient 𝐷𝑘.

 For MU 𝑘, select Ωk channel links to obtain their 

instantaneous values, These are our “relevant” links.

 Sort 𝐷𝑘 in descending order of magnitude, select |Ωk|

largest entry indices and place them into Ωk. Others only

have statistical information.  
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Form Transformation

Indicator function 𝟏(𝟎,+∞)𝒛: 

1 if z>0, Else 0 
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DC Approximation

Upper bound the 

indicator function
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DC Approximation

𝑓 𝑃 ≤ 𝜖 ሚ𝑓 𝑃, 𝑣 ≤ 𝜖
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Successive Convex Approximation

Convexify

Upper Bound

 Non-convex?

 Still Challenging?
– Monto Carlo Method: approximate by generating 𝐽 number of 

realizations 
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Final Power Minimization

Convex optimization problem:
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Algorithm

 Input: initial 𝑷 0 , 𝜇 0

 Iterative Step till Convergence

– Calculate the upper bound 𝑔𝑛 of DC constraint 

𝜑 𝒑, 𝜇 − 𝜑(𝒑, 0) near (𝑷 𝑛−1 , 𝜇 𝑛−1 )

– Update the value (𝑷 𝑛 , 𝜇 𝑛 ) by solving the final 

convex optimization problem

 Output: 𝑷 𝐹𝑖𝑛𝑎𝑙 , 𝜇 𝐹𝑖𝑛𝑎𝑙
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Theorems

 DC approximation problem is equivalent to 

solving the original problem. 

 If the original problem is convex, it can 

finally converge to optimal point. If the 

original problem is non-convex, it will 

converge to local optimal point.

Ref: LJ Hong, Y Yang, L Zhang, “Sequential Convex Approximations to Joint Chance 

Constrained Programs: A Monte Carlo Approach”, Operations Research, 2011
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 Channel Link Model:
– 𝜏𝑘𝑙 = (0 ≤ 𝜏𝑘𝑙 ≤ 1): estimation quality. 

– ො𝒄𝒌𝒍: estimated imperfect small-scale fading coefficient.

– 𝑒𝑘𝑙: estimation error.

– 𝐷_𝑘𝑙 large-scale fading coefficient:
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Experimental Setup

 Comparison method: 

– Scenario Approach: approximate the probabilistic constraint 

by multiple “sampling” constraints using Monte Carlo simulation.

– Bernstein Approximation: bound the indicator function 

constraint with a closed-form convex function exp(z).
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Total Transmit Power VS Target 

SINR Requirements
 𝐿 = 10 , 𝑁𝑙 =
1,𝐾 = 6.

 MUs distributed: 

[-500,500]×[-

500,500] meters.

 60% of the CSI 

are obtained.

 Result averaged 

over 100 times.
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 𝐿 = 12 , 𝑁𝑙 =
1,𝐾 = 8.

 MUs distributed : 

[-600,600]×[-

600,600] meters.

 Result averaged 

over 60 times.

Total Transmit Power VS CSI 

Compression Ratios
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Conclusion

 Framework: 

– Compressive CSI acquisition to reduce CSI signaling overhead. 

– DC approximation method to estimate the probabilistic constraint 

with optimality guarantee.

 Experiments: 

– DC Approximation + Compressive CSI: achieve performance 

close to full CSI case while significantly reducing CSI overhead. 

– Our method outperforms state-of-the-art methods. 
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Thank you!

&

Questions?


