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Mobile Data Explosion

Figure 3. Global Mobile Data Traffic Forecast by Region
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Cloud-RAN Architecture

= Cloud-Radio Access Network is a promising
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Ref: Y Shi, J Zhang, KB Letaief, “CSI Overhead Reduction with Stochastic
Beamforming for Cloud Radio Access Networks”, ICC 2014
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Motivation

= To fully exploit cooperative gain in C-RAN, full
channel state information (CSI) is required.

— Challenging to obtain full CSl in large and dense
networks

= Power minimization problem with probabillistic
Quality-of-Service (Qo0S) requirements:

— Practical but hard to obtain optimal solutions
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Contributions

Challenges

(1) Challenging to obtain full
CSl

(2) Hard to provide good
approximation to the
probabilistic QoS constraints?

Solution

(1) Compressive CSI acquisition
to exploit sparsity of large-scale
fading coefficients

(2) DC approximation to the
probabilistic constraints, which
provides optimality guarantee.
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Notations

K single-antenna mobile

users (MUSs).

L multi-antenna remote
radio heads (RRHSs).

[-th RRH Is equip

antennas.

ned with N;

[-th RRH to k-th MU:

— hy;: channel gain; vy, beamforming

vector.
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Notations

FOr MU k: BBU1 BBU2 BBU3 BBU4 BBU5

— ny: additive Gaussian, sy: e @ @ @ @ @

encoded data symbol.
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Transmit Power Minimization

Probabilistic QoS constraints:  Pr{l'x(p,&) > V&, Vk} > 1 —¢

R p— A
SINR formula: s S Vi £ o2
Pr&rk vk

N 2%7&;3 ngkt + O']% ’ ’

Power minimization problem: mlfPl)leﬁcllze 1'p

subject to Pr{T'x(p, &) > v, Vk} > 1—¢
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Compressive CSI Scheme

= Observation: channel links of
RRH and MU that are far
away have very minor
contribution on system
performance.

= Only select channel links that
have greater contribution.
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Compressive CSl Scheme

= Assumption:

— Statistical information for all channel links are available

— Can accurately track large scale fading coefficient D;,.

= For MU k, select O, channel links to obtain their
Instantaneous values, These are our “relevant” links.

= Sort D, in descending order of magnitude, select ||
largest entry indices and place them into Q. Others only
have statistical information.
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Form Transformation
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DC Approximation
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Upper bound the
¢(Zav) > 1(0,—|—oo)(z) — indicator function

$(z,v) = ;llv+2)T =2 v >0 mp
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DC Approximation

f(P)<e

1

f(p,v) = E[Gb( max

1<k<K

= L[(p,v) — 2(

. > f(P,v) <€
L
k(p,g),vﬂ b(p,v) = 1[4;[ (U + max_ Tk (P, 6))
p,0)],v >0 - )

minimize 17 p
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Successive Convex Approximation

= Non-convex?

Convexify

gn(p, 1) = p(p, 1) — p(p™ ", 0) -
> Vo™ 0)" (p-p"H)

o(p, 1) — (P, 0) ||

Upper Bound

= Still Challenging?

— Monto Carlo Method: approximate by generating / number of

realizations
g n- Ve(p,0) =
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Final Power Minimization

Convex optimization problem:

minimize 17 p
peC.u=0

J
. 1 —= n—.
subject to 7 E z; —@(p" 1, 0) -

i=1
Ve o) (p—p" ) —ue <o,
u+me(p, &) < 2,2 > 0,Vk, 7,
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Algorithm

= Input: initial P!, ;0]

= |terative Step till Convergence

— Calculate the upper bound g,, of DC constraint

(p(p' ,U) T (P(p; O) near (P

— Update the value (P™ 4
convex optimization prob

- Output: P[Final]“u[Final]

in—l]’ H[n—l])

" by solving the final

em
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Theorems

= DC approximation problem is equivalent to
solving the original problem.

= |f the original problem is convex, It can
finally converge to optimal point. If the
original problem is non-convex, it will
converge to local optimal point.

Ref: LJ Hong, Y Yang, L Zhang, “Sequential Convex Approximations to Joint Chance
Constrained Programs: A Monte Carlo Approach”, Operations Research, 2011
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Experimental Setup

= Channel Link Model: hy = Dii(\/1 — 77,€x1 + Tri€rt)
— T = (0 < 147 < 1): estimation quality.
— Cy: estimated imperfect small-scale fading coefficient.

— ey;: estimation error.
— D_kl large-scale fading coefficient: 10~ 2(dx)/20 /556

= Comparison method:

— Scenario Approach: approximate the probabilistic constraint
by multiple “sampling” constraints using Monte Carlo simulation.

— Bernstein Approximation: bound the indicator function
constraint with a closed-form convex function exp(z).

Arizona State University

_ 9292



Total Transmit Power VS Target
SINR Requwements
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Total Transmit Power VS CSI
Compressmn Ratios
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= MUSs distributed :
[-600,600]X[-
600,600] meters.

= Result averaged
over 60 times.

_ 24 -

Arizona State University



- 25 -

Roadmap

" |ntroduction

" Problem Formulation
= Solution

= Experimental Results

® Conclusion

Arizona State University



Conclusion

= Framework:

— Compressive CSI acquisition to reduce CSI signaling overhead.

— DC approximation method to estimate the probabilistic constraint
with optimality guarantee.

= EXperiments:

— DC Approximation + Compressive CSI: achieve performance
close to full CSI case while significantly reducing CSI overhead.

— Our method outperforms state-of-the-art methods.

_ 26 - Arizona State University



_27 -

Thank you!
&

Questions?

Arizona State University



