Optimal Stochastic Power Control with Compressive CSI Acquisition for Cloud-RAN

Suya, Yuanming Shi, Bo Bai, Wei Chen, Jun Zhang, Khaled B. Letaief, Shidong Zhou

Roadmap

- Introduction
- Problem Formulation
- Solution
- Experimental Results
- Conclusion

Mobile Data Explosion

Ref: Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020 White Paper

Cloud-RAN Architecture

Cloud-Radio Access Network is a promising

Ref: Y Shi, J Zhang, KB Letaief, "CSI Overhead Reduction with Stochastic Beamforming for Cloud Radio Access Networks", ICC 2014

Motivation

- To fully exploit cooperative gain in C-RAN, full channel state information (CSI) is required.
 - Challenging to obtain full CSI in large and dense networks
- Power minimization problem with probabilistic
 Quality-of-Service (QoS) requirements:
 - Practical but hard to obtain optimal solutions

Contributions

Challenges	Solution
(1) Challenging to obtain full CSI	(1) Compressive CSI acquisition to exploit sparsity of large-scale fading coefficients
(2) Hard to provide good approximation to the probabilistic QoS constraints?	(2) DC approximation to the probabilistic constraints, which provides optimality guarantee.

Roadmap

- Introduction
- Problem Formulation
- Solution
- Experimental Results
- Conclusion

Notations

- K single-antenna mobile users (MUs).
- L multi-antenna remote radio heads (RRHs).
- *l*-th RRH is equipped with N_l antennas.
- *l*-th RRH to *k*-th MU:
 - h_{kl} : channel gain; v_{lk} : beamforming vector.

Notations

• For MU *k*: $- n_k$: additive Gaussian, s_k : encoded data symbol. $-\boldsymbol{h}_{k} = \left[\boldsymbol{h}_{k1}^{T}, \boldsymbol{h}_{k2}^{T}, \dots, \boldsymbol{h}_{kL}^{T}\right]^{T},$ $\boldsymbol{v}_{k} = [\boldsymbol{v}_{k1}^{T}, \boldsymbol{v}_{k2}^{T}, \dots, \boldsymbol{v}_{kL}^{T}]^{T}$ $-\boldsymbol{v}_k = \sqrt{p_k \boldsymbol{u}_k}, \ \boldsymbol{u}_k$ direction, p_k power, u_k determined in advance: zero-force beamforming.

Transmit Power Minimization

Probabilistic QoS constraints: $\Pr{\{\Gamma_k(\mathbf{p}, \boldsymbol{\xi}) \geq \gamma_k, \forall k\}} \geq 1 - \epsilon$

SINR formula:

$$\Gamma_{k}(\mathbf{p}, \boldsymbol{\xi}) = \frac{|\mathbf{h}_{k}^{\mathsf{H}} \mathbf{v}_{k}|^{2}}{\sum_{i \neq k} |\mathbf{h}_{k}^{\mathsf{H}} \mathbf{v}_{i}|^{2} + \sigma_{k}^{2}}$$
$$= \frac{p_{k} \xi_{kk}}{\sum_{i \neq k} p_{i} \xi_{ki} + \sigma_{k}^{2}}, \forall k,$$

Power minimization problem:

minimize
$$\mathbf{1}^T \mathbf{p}$$

subject to $\Pr{\{\Gamma_k(\mathbf{p}, \boldsymbol{\xi}) \ge \gamma_k, \forall k\}} \ge 1 - \epsilon$

Roadmap

- Introduction
- Problem Formulation
- Solution
- Experimental Results
- Conclusion

Compressive CSI Scheme

 Observation: channel links of RRH and MU that are far away have very minor contribution on system performance.

 Only select channel links that have greater contribution.

Compressive CSI Scheme

Assumption:

- Statistical information for all channel links are available
- Can accurately track large scale fading coefficient D_k .
- For MU k, select Ωk channel links to obtain their instantaneous values, These are our "relevant" links.
- Sort D_k in descending order of magnitude, select $|\Omega_k|$ largest entry indices and place them into Ω_k . Others only have statistical information.

Form Transformation

$$\Gamma_k(\mathbf{p},\boldsymbol{\xi}) \geq \gamma_k \implies \pi_k(\mathbf{p},\boldsymbol{\xi}) \triangleq \sum_{i \neq k} p_i \xi_{ki} + \sigma_k^2 - p_k \xi_{kk} / \gamma_k \leq 0, \forall k$$

DC Approximation

DC Approximation

$$\begin{array}{l} \underset{\mathbf{p}\in\mathcal{C},\mu\geq0}{\text{minimize}} \ \mathbf{1}^{T}\mathbf{p} \\ \text{subject to} \ \underbrace{\left[\psi(\mathbf{p},\mu)-\mu\epsilon\right]}_{\varphi(\mathbf{p},\mu)} - \underbrace{\psi(\mathbf{p},0)}_{\varphi(\mathbf{p},0)} \leq 0. \end{array}$$

Successive Convex Approximation

Non-convex?

Still Challenging?

Monto Carlo Method: approximate by generating J number of realizations

$$\begin{split} \bar{g}_{n}(\mathbf{p},\mu) &= \bar{\varphi}(\mathbf{p},\mu) - \bar{\varphi}(\mathbf{p}^{[n-1]},0) - & \bar{\nabla}\varphi(\mathbf{p},0) = \\ \bar{\nabla}\varphi(\mathbf{p}^{[n-1]},0)^{T}(\mathbf{p}-\mathbf{p}^{[n-1]}) & \frac{1}{J}\sum_{j=1}^{J} \left[\nabla_{\mathbf{p}\pi_{k^{\star}}((\mathbf{p},\boldsymbol{\xi}^{j})) \cdot \left(\left(\max_{1 \leq k \leq K} \pi_{k}(\mathbf{p},\boldsymbol{\xi}^{j}) \right)^{+} \right)^{\prime} \right] \\ \bar{\varphi}(\mathbf{p},\mu) &= \frac{1}{J}\sum_{j=1}^{J} \left[\left(\mu + \max_{1 \leq k \leq K} \pi_{k}(\mathbf{p},\boldsymbol{\xi}^{j}) \right)^{+} \right] - \mu\epsilon_{j} \end{split}$$

Final Power Minimization

Convex optimization problem:

$$\begin{array}{l} \underset{\mathbf{p}\in\mathcal{C},\mu\geq0}{\text{minimize}} \ \mathbf{1}^{T}\mathbf{p} \\ \text{subject to} \ \frac{1}{J}\sum_{j=1}^{J}z_{j}-\bar{\varphi}(\mathbf{p}^{[n-1]},0) - \\ & \bar{\nabla}\varphi(\mathbf{p}^{[n-1]},0)^{T}(\mathbf{p}-\mathbf{p}^{[n-1]})-\mu\epsilon\leq0, \\ & \mu+\pi_{k}(\mathbf{p},\boldsymbol{\xi}^{j})\leq z_{j},z_{j}\geq0,\forall k,j, \end{array}$$

Algorithm

- Input: initial $P^{[0]}, \mu^{[0]}$
- Iterative Step till Convergence
 - Calculate the upper bound g_n of DC constraint $\varphi(\mathbf{p},\mu) \varphi(\mathbf{p},0)$ near $(\mathbf{P}^{[n-1]},\mu^{[n-1]})$
 - Update the value ($P^{[n]}, \mu^{[n]}$) by solving the final convex optimization problem
- Output: $P^{[Final]}, \mu^{[Final]}$

Theorems

DC approximation problem is equivalent to solving the original problem.

If the original problem is convex, it can finally converge to optimal point. If the original problem is non-convex, it will converge to local optimal point.

Ref: LJ Hong, Y Yang, L Zhang, "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach", Operations Research, 2011

Roadmap

- Introduction
- Problem Formulation
- Solution
- Experimental Results
- Conclusion

Experimental Setup

- Channel Link Model: $\mathbf{h}_{kl} = D_{kl}(\sqrt{1-\tau_{kl}^2}\hat{\mathbf{c}}_{kl} + \tau_{kl}\mathbf{e}_{kl})$
 - $\tau_{kl} = (0 \le \tau_{kl} \le 1)$: estimation quality.
 - \hat{c}_{kl} : estimated imperfect small-scale fading coefficient.
 - e_{kl} : estimation error.
 - $D_k l$ large-scale fading coefficient: 10^{-1}

$$-L(d_{kl})/20\sqrt{\varphi_{kl}s_{kl}}$$

- Comparison method:
 - Scenario Approach: approximate the probabilistic constraint by multiple "sampling" constraints using Monte Carlo simulation.
 - Bernstein Approximation: bound the indicator function constraint with a closed-form convex function exp(z).

Total Transmit Power VS Target SINR Requirements

•
$$L = 10$$
, $N_l = 1, K = 6.$

- MUs distributed: [-500,500]×[-500,500] meters.
- 60% of the CSI are obtained.
- Result averaged over 100 times.

Total Transmit Power VS CSI Compression Ratios

- L = 12, $N_l = 1, K = 8.$
- MUs distributed : [-600,600]×[-600,600] meters.
- Result averaged over 60 times.

Roadmap

- Introduction
- Problem Formulation
- Solution
- Experimental Results
- Conclusion

Conclusion

- Framework:
 - Compressive CSI acquisition to reduce CSI signaling overhead.
 - DC approximation method to estimate the probabilistic constraint with optimality guarantee.
- Experiments:
 - DC Approximation + Compressive CSI: achieve performance close to full CSI case while significantly reducing CSI overhead.
 - Our method outperforms state-of-the-art methods.

Thank you! & Questions?

