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Mobile Data Explosion

Ref: Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 

2015–2020 White Paper
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Cloud-RAN Architecture

 Cloud-Radio Access Network is a promising

Ref: Y Shi, J Zhang, KB Letaief, “CSI Overhead Reduction with Stochastic 

Beamforming for Cloud Radio Access Networks”, ICC 2014
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Motivation

 To fully exploit cooperative gain in C-RAN, full

channel state information (CSI) is required. 

– Challenging to obtain full CSI in large and dense 

networks 

 Power minimization problem with probabilistic

Quality-of-Service (QoS) requirements:

– Practical but hard to obtain optimal solutions
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Contributions

Challenges Solution

(1) Challenging to obtain full 

CSI

(1) Compressive CSI acquisition 

to exploit sparsity of large-scale 

fading coefficients

(2) Hard to provide good 

approximation to the 

probabilistic QoS constraints?

(2) DC approximation to the 

probabilistic constraints, which 

provides optimality guarantee. 
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Notations

 𝐾 single-antenna mobile 

users (MUs).

 𝐿 multi-antenna remote 

radio heads (RRHs).

 𝑙-th RRH is equipped with 𝑁𝑙

antennas.

 𝑙-th RRH to 𝑘-th MU:

– ℎ𝑘𝑙: channel gain; 𝑣𝑙𝑘: beamforming 

vector.
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 For MU 𝑘: 

– 𝑛𝑘: additive Gaussian, 𝑠𝑘: 

encoded data symbol. 

– 𝒉𝑘 = 𝒉𝑘1
𝑇 , 𝒉𝑘2

𝑇 , … , 𝒉𝑘𝐿
𝑇 𝑇

, 

𝒗𝑘 = 𝒗𝑘1
𝑇 , 𝒗𝑘2

𝑇 , … , 𝒗𝑘𝐿
𝑇 𝑇

– 𝒗𝑘 = 𝑝𝑘𝒖𝑘 , 𝒖𝑘

direction, 𝑝𝑘 power, 𝒖𝑘

determined in advance: 

zero-force beamforming.     

Notations
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Transmit Power Minimization

Probabilistic QoS constraints: 

SINR formula: 

Power minimization problem: 
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Compressive CSI Scheme

 Observation: channel links of 

RRH and MU that are far 

away have very minor 

contribution on system 

performance.

 Only select channel links that 

have greater contribution.
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Compressive CSI Scheme

 Assumption: 

– Statistical information for all channel links are available 

– Can accurately track large scale fading coefficient 𝐷𝑘.

 For MU 𝑘, select Ωk channel links to obtain their 

instantaneous values, These are our “relevant” links.

 Sort 𝐷𝑘 in descending order of magnitude, select |Ωk|

largest entry indices and place them into Ωk. Others only

have statistical information.  
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Form Transformation

Indicator function 𝟏(𝟎,+∞)𝒛: 

1 if z>0, Else 0 
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DC Approximation

Upper bound the 

indicator function
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DC Approximation

𝑓 𝑃 ≤ 𝜖 ሚ𝑓 𝑃, 𝑣 ≤ 𝜖
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Successive Convex Approximation

Convexify

Upper Bound

 Non-convex?

 Still Challenging?
– Monto Carlo Method: approximate by generating 𝐽 number of 

realizations 
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Final Power Minimization

Convex optimization problem:
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Algorithm

 Input: initial 𝑷 0 , 𝜇 0

 Iterative Step till Convergence

– Calculate the upper bound 𝑔𝑛 of DC constraint 

𝜑 𝒑, 𝜇 − 𝜑(𝒑, 0) near (𝑷 𝑛−1 , 𝜇 𝑛−1 )

– Update the value (𝑷 𝑛 , 𝜇 𝑛 ) by solving the final 

convex optimization problem

 Output: 𝑷 𝐹𝑖𝑛𝑎𝑙 , 𝜇 𝐹𝑖𝑛𝑎𝑙
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Theorems

 DC approximation problem is equivalent to 

solving the original problem. 

 If the original problem is convex, it can 

finally converge to optimal point. If the 

original problem is non-convex, it will 

converge to local optimal point.

Ref: LJ Hong, Y Yang, L Zhang, “Sequential Convex Approximations to Joint Chance 

Constrained Programs: A Monte Carlo Approach”, Operations Research, 2011
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 Channel Link Model:
– 𝜏𝑘𝑙 = (0 ≤ 𝜏𝑘𝑙 ≤ 1): estimation quality. 

– ො𝒄𝒌𝒍: estimated imperfect small-scale fading coefficient.

– 𝑒𝑘𝑙: estimation error.

– 𝐷_𝑘𝑙 large-scale fading coefficient:
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Experimental Setup

 Comparison method: 

– Scenario Approach: approximate the probabilistic constraint 

by multiple “sampling” constraints using Monte Carlo simulation.

– Bernstein Approximation: bound the indicator function 

constraint with a closed-form convex function exp(z).
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Total Transmit Power VS Target 

SINR Requirements
 𝐿 = 10 , 𝑁𝑙 =
1,𝐾 = 6.

 MUs distributed: 

[-500,500]×[-

500,500] meters.

 60% of the CSI 

are obtained.

 Result averaged 

over 100 times.
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 𝐿 = 12 , 𝑁𝑙 =
1,𝐾 = 8.

 MUs distributed : 

[-600,600]×[-

600,600] meters.

 Result averaged 

over 60 times.

Total Transmit Power VS CSI 

Compression Ratios
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Conclusion

 Framework: 

– Compressive CSI acquisition to reduce CSI signaling overhead. 

– DC approximation method to estimate the probabilistic constraint 

with optimality guarantee.

 Experiments: 

– DC Approximation + Compressive CSI: achieve performance 

close to full CSI case while significantly reducing CSI overhead. 

– Our method outperforms state-of-the-art methods. 
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Thank you!

&

Questions?


