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Challenge: HVAC systems need to be more smart for both energy
efficiency and user comfort.
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Desiderata: Design a real-time decentralized control scheme

Real-time disturbances: outdoor
temperature & indoor heat gains
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M N Continuously changing inputs to ensure optimality
Real-time | w in the presence of real-time disturbances

Decentralized

Need only local measurement/information which
respects user privacy, and is scalable with respect
to building structures

Balance user comfort and energy saving
Steady-state
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Compared with convention controllers (PID, MPC, mean-field control, etc.), our
controller can be either more efficient or be implemented in a more easier way.

Respect system operating constraints
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Setup: Temperature dynamics and steady-state optimization
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. Convex relaxation
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Assume that in the cooling/heating mode, 7 <7° /T >T°, and that
the zone temperature set point satisfies /,(7°) = m™",Vi. Then the above
convex relaxation is always tight, i.e., the optimal solution of these two
optimization problems are exactly the same.

Il. Decentralized control design — motivated by a primal-dual gradient method
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Under constant/slow-varying external disturbances, the above controller
drives the approximate model to an equilibrium point which is the unique
optimal solution of the steady-state optimization problem.

Ill. Decentralized implementation — a numerical example
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and broadcasts it.

Outdoor temperature
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Each zone collects its set point from
users, locally measures its indoor
temperature and receives the signal
from the supply fan/duct.

Indoor heat gain
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Curves labeled with “app” indicate the case of using the approximate model

IV. Extension — the community scenario
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The proposed control framework can be applied to the following scenario —
HVAC management in a community: each house is equipped with an HVAC
system; the approximate model exactly describes the house temperature
dynamics; the solution of the steady-state optimization problem determines

an efficient resource allocation plan for the whole community.
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The supply fan/duct locally measures
the total flow rate, updates the signal
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