A Distributed Smart PEV Charging Algorithm Based on Forecasted Mobility Energy Demand

Mithat KISACIKOGLU

Coauthors: Fatih Erden and Nuh Erdogan

Electrical and Computer Engineering University of Alabama

December 9, 2016

ALABAMA®

Overview

- Motivation
- System Description and Modeling
- Proposed Distributed Charging Algorithm
- Case Studies
- Conclusions

Problems with Grid integration of PEVs

• Mass penetration of PEVs will put grid under more stress.

- Mass penetration of PEVs will put grid under more stress.
- Users will want to charge as quickly as possible.

- Mass penetration of PEVs will put grid under more stress.
- Users will want to charge as quickly as possible.
 - Increase on peak loading on feeders and transformers

- Mass penetration of PEVs will put grid under more stress.
- Users will want to charge as quickly as possible.
 - Increase on peak loading on feeders and transformers
 - Increased distribution level voltage drops

- Mass penetration of PEVs will put grid under more stress.
- Users will want to charge as quickly as possible.
 - Increase on peak loading on feeders and transformers
 - Increased distribution level voltage drops
 - Increased unbalanced loading due to single-phase charging

- Mass penetration of PEVs will put grid under more stress.
- Users will want to charge as quickly as possible.
 - Increase on peak loading on feeders and transformers
 - Increased distribution level voltage drops
 - Increased unbalanced loading due to single-phase charging
 - New investment requirements

- Mass penetration of PEVs will put grid under more stress.
- Users will want to charge as quickly as possible.
 - Increase on peak loading on feeders and transformers
 - Increased distribution level voltage drops
 - Increased unbalanced loading due to single-phase charging
 - New investment requirements
- Unidirectional (V1G) and Bidirectional (V2G) solutions are possible

Our contribution:

- A distributed smart charging algorithm to decrease peak loading and to fill the night valley
- Ensure full SOC in the morning
- Variable charging with min 6 A charging current per PEV as defined in SAE J1772
- Computation of a variable grid preferred operation point (POP) depeding on the charging load
- Reduced bidirectional communication flow

EVGI Modeling Components

Distribution System Setting and PEV Models

- Three-phase 1 MVA distribution grid with 980 residential customers
- Extraction of mobility distribution parameters from collected data

Types of PEVs and Their Specifications

31			- 1	
Vehicle Make	Vehicle	Battery Size	EV Range	Max. charge
and Model	Type	(kWh)	(km)	power (kW)
BMW i3	EV	18	110	7.4
Chevy Volt	PHEV	10	50	3.3
Nissan Leaf	EV	24	150	6.6
Renault Zoe	EV	22	100	7.4
Tesla Model S	EV	85	350	10

Algorithm Operation

PEV Connection times: $t_1 \le t_2 \le ... \le t_n$

Algorithm 1 POP estimation algorithm

- 1) Generate the mobility and base load data
- 2) Compute $E_{required}$
- 3) Initialize POP value to peak of base load at noon
- 4) Calculate Evalley

```
check_convergence = Inf
while |E_{required} - E_{valley}| < check\_convergence
do

if E_{required} > E_{valley} then
increment POP value
else
decrement POP value
end if
check\_convergence \leftarrow |E_{required} - E_{valley}|
update E_{valley}
end while
```

Algorithm Operation, cnt'd

Off-line operation:

$$E_{valley} = \int_{t_{arr.1}}^{t_{dept,ave}} P_{valley}(t) dt,$$

where,

$$P_{valley}(t) = \begin{cases} POP - P_{base}(t), & \text{if } POP - P_{base}(t) > 0\\ 0, & \text{otherwise} \end{cases}$$

Algorithm Operation, cnt'd

On-line operation:

$$E_{valley,i}(t) = \int_{t}^{t_{dept,i}} P_{valley}(\tau) d\tau, \quad t_{arr,i} < t < t_{dept,i}$$

$$\alpha_{i}(t) = \begin{cases} \frac{E_{rated,i} \times (1 - SOC_{i}(t))}{E_{valley,i}(t)}, & \text{if } t_{arr,i} < t < t_{dept,i} \\ 0, & \text{otherwise} \end{cases}$$

$$P_{ch,i}(t) = \alpha_{i}(t) \times P_{valley}(t)$$

$$P_{ch,i}(t) = \begin{cases} 0 \text{ kW}, & \text{if } 0 < P_{ch,i} < 0.66 \text{ kW} \\ 1.32 \text{ kW} & \text{if } 0.66 \text{ kW} < P_{ch,i} < 1.32 \text{ kW} \end{cases}$$

$$P_{valley}(t) = P_{valley}(t) - P_{ch,i}(t), \quad 0h < t < 24h$$

Highlights of Algorithm

- Reduced communication rate
- Low computational load
- Non-iterative, individually distributed
- Privacy kept at the charging station

Distribution Grid Features

Daily average active power demands for four months:

Total penetration is 10% of # of customers.

Case scenarios:

- 100% Standard charging
- 50% Standard charging + 50% Smart charging
- 3 100% Smart Charging

Results for the Case#1

Result of 10% PEV penetration for Case 1 (100% standard charging).

Results for the Case#2

Result of 10% PEV penetration for Case 2 (50% standard+ 50% smart charging).

Results for the Case#3

Result of 10% PEV penetration for Case 3 (100% smart charging).

Numerical Results

$$MSE = \frac{1}{t_2 - t_1} \sum_{t=t_1}^{t_2} P_{aggr}(t) - POP)^2 \quad \sigma^2 = \frac{1}{t_{dept,ave} - t_{arr,ave}} \sum_{t=t_{arr,ave}}^{t_{dept,ave}} (P_{aggr}(t) - \mu)^2$$

Case #	Standard charging PEVs [%]	Smart charging PEVs [%]	MSE^* $(kW)^2$	Variance† (kW) ²
1	100	0	N/A	12405
2	50	50	17.4	3304
3	0	100	1.9	51.7

^{*}Calculated between 1:00 am and 7:00 am.

[†]Calculated between 7:55 pm and 7:47 am next day.

Conclusions and Future Work

Conclusions

- Smart charging on distribution grid to smoothen load profile
- User convenience addressed w/ 100% charge in the morning
- Tested w/ real power distribution power consumption
- Performed better than reported algorithms (under review)

Future Work

- Provide service other than load leveling, i.e., load shifting
- Implement in lab using cyber-physical systems to verify comm. rates

Contact: mkisacik@ua.edu

