Robust Multi-User Analog Beamforming in mmWave MIMO Systems

Lisi Jiang (with Hamid Jafarkhani)

5G

 1000 times the system capacity and 10 times the spectrum efficiency

mmWave

- Key technology
- High data rate and spectrum efficiency

MU-

MIMO

Higher system throuput

Center for Pervasive Communications and Computing

Background

MU-MIMO beamforming in mmWave

Challenges and solutions

Tradeoff between interference and beamforming gain

> Establish Multiobjective problem

Find the best weight assignment

Robust design

Develop channel error model

Introduce the stochastic approach

System model

Center for Pervasive Communications and Computing

Channel model

Center for Pervasive Communications and Computing

Channel Error Model

Problem Formulation

Interference suppression:

• Leakage Probability (restriction)

$$P_{leakage} = \Pr\{w_i^H \tilde{\mathbf{I}}_i^H \tilde{\mathbf{I}}_i w_i \le \gamma_i\}$$
⁽⁹⁾

Average beamforming gain:

• Expectation

$$BG_{avg} = E[w_i^H \mathbf{A}_i \mathbf{A}_i^H w_i]$$
⁽¹⁰⁾

Problem formulation

$$w_i^{opt} = \{ E[w_i^H \mathbf{A}_i \mathbf{A}_i^H w_i], Pr\{w_i^H \tilde{\mathbf{I}}_i^H \tilde{\mathbf{I}}_i w_i \le \gamma_i \} \}$$

s.t. $w_i \in \mathcal{W},$ (11)

Dealing with the probabilistic restriction

Using Markov's inequality to transform the probabilistic restriction to a deterministic objective

Problem reformulation

$$\begin{split} \mathbf{W}^{opt} &= \{Tr((\mathbf{A}_{i}^{p}(\mathbf{A}_{i}^{p})^{H} + \mathbf{C}_{i})\mathbf{W}), \\ & \left(1 - \frac{Tr(((\tilde{\mathbf{I}}_{i}^{p})^{H}\tilde{\mathbf{I}}_{i}^{p} + \tilde{\mathbf{C}}_{i})\mathbf{W})}{\gamma_{i}}\right)\} \\ s.t. \quad \mathbf{W}_{ii} &= \frac{1}{N_{t}}, \ \forall i = 1, \dots, N_{t}; \\ \mathbf{W} \succeq 0; \\ rank(\mathbf{W}) &= 1, \qquad \text{non-convex} \\ \text{constraints} \\ & \text{linear} \\ \text{constraints} \\ \end{split}$$

• SDP

$$SDP(\mathbf{W}^{opt}) = \left\{ \lambda_1 \left(1 - \frac{Tr(((\tilde{\mathbf{I}}_i^p)^H \tilde{\mathbf{I}}_i^p + \tilde{\mathbf{C}}_i) \mathbf{W})}{\gamma_i} \right) + SDR(\mathbf{W}^{opt}) = \left\{ \lambda_1 \left(1 - \frac{Tr(((\tilde{\mathbf{I}}_i^p)^H \tilde{\mathbf{I}}_i^p + \tilde{\mathbf{C}}_i) \mathbf{W})}{\gamma_i} \right) \right) \right\}$$

$$\lambda_2 Tr((\mathbf{A}_i^p (\mathbf{A}_i^p)^H + \mathbf{C}_i) \mathbf{W})$$

$$s.t. \quad \mathbf{W}_{ii} = \frac{1}{N_t}, \ \forall i = 1, ..., N_t;$$

$$\mathbf{W} \succeq 0;$$

$$rank(\mathbf{W}) = 1,$$

$$SDR(\mathbf{W}^{opt}) = \left\{ \lambda_1 \left(1 - \frac{Tr(((\tilde{\mathbf{I}}_i^p)^H \tilde{\mathbf{I}}_i^p + \tilde{\mathbf{C}}_i) \mathbf{W})}{\gamma_i} \right) \right\}$$

$$SDR(\mathbf{W}^{opt}) = \left\{ \lambda_1 \left(1 - \frac{Tr(((\tilde{\mathbf{I}}_i^p)^H \tilde{\mathbf{I}}_i^p + \tilde{\mathbf{C}}_i) \mathbf{W})}{\gamma_i} \right) \right\}$$

$$SDR(\mathbf{W}^{opt}) = \left\{ \lambda_1 \left(1 - \frac{Tr(((\tilde{\mathbf{I}}_i^p)^H \tilde{\mathbf{I}}_i^p + \tilde{\mathbf{C}}_i) \mathbf{W})}{\gamma_i} \right) \right\}$$

SDR can be efficiently solvedApproximation is needed

+

Simulation

Methods	Imperfect channel model
Fully-digital ZF	$ ilde{h}(\mathbf{A}_{i}^{p}+\mathbf{E}_{i})$
Beam Selection	$\Delta \theta_i$ in beam alignment with mean 0 and variance σ_i
Our proposed method	$\mathbf{A}_{i}^{p}+\mathbf{E}_{i}$

• Strike a balance in terms of sum-rate

Best weight searching

Center for Pervasive Communications and Computing

Performance comparison

Summery

Developed a channel error model for the scattering clustered channel model, which can serve as a general channel error model for mmWave channels

Proposed a robust analog beamforming scheme for mmWave systems to alleviate the effects of the channel estimation and feedback quantization errors

The proposed robust analog beamforming scheme brings about 109% improvement in sum-rate compared to the conventional beam selection method.

