

# Shaking and Speech-smile Vowels Classification: An Attempt at Amusement Arousal Estimation from Speech Signals

Kevin El Haddad, Stéphane Dupont, Hüseyin Cakmak, Thierry Dutoit TCTS - University of Mons





### > Overview of Main Objective

#### > Approach

#### > Amusement Components Classification

#### Conclusion

#### Ongoing Work and Perspectives

### Main project: Amusement Level Estimation

Amusement level assessment :

- Recognition of amusement component in speech
- Mapping between componants and amusement levels
- Contribution to context understanding
- Real-time system

JOKER <br/>
http://www.chistera.eu/projects/joker





Purpose:

- Contribution in HCI
- User emotional state estimation on an amusement scale

### Main project: Amusement Level Estimation

Amusement level assessment :

- Recognition of amusement component in speech
- Mapping between componants and amusement levels
- Contribution to context understanding
- Real-time system





# Approach

#### Usual approach:

- Extract global features (pitch, MFCC, etc..)
- Use them for Emotion classification and dimension estimation

#### Our approach:

- Recognize amusement
   components in speech
- Two components are focused on in this work:
   1. Smiled vowels
  - 2. Shaking vowels
- Map detected components to arousal level for amusement

## Amusement Components Classification: The components



- Vowel-like signals
- Discontinuity in spectral domain due to air burst

## Amusement Components Classification: The components



7

## Amusement Components Classification: Feature extraction

|             | Set 1                                                                    | Set 2                                                                                                                                                                                      | Set 3                                                                                                                                 |
|-------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Parameters  | <ul> <li>Mean and StD of:</li> <li>13 MFCC</li> <li>13 Δ MFCC</li> </ul> | <ul> <li>Positive Negative Amp.<br/>Ratio</li> <li>Spectral flatness</li> <li>Mean and StD of:</li> <li>FO</li> <li>Spectral Centroid</li> <li>Max. Voiced Freq</li> <li>Energy</li> </ul> | <ul> <li>StD of:</li> <li>Δ FO and log-power envelope</li> <li>Residuals of FO and log-power envelope to linear regression</li> </ul> |
| Description | Frequently used in<br>speech recognition<br>systems                      | Spectral and temporal features                                                                                                                                                             | Stability-Based<br>features ( <b>New!)</b>                                                                                            |







#### **Error Rates of a k-Nearest Neighbor (kNN):**

| Sets          | Mean  | StD  |
|---------------|-------|------|
| Set 1         | 32%   | 2.5% |
| Set 2         | 33.6% | 2.3% |
| Set 3         | 32.7% | 3.2% |
| Set 1 + Set 2 | 32%   | 2.5% |
| Set 1 + Set 3 | 32.5% | 3.6% |
| Set 2 + Set 3 | 30.1% | 2.8% |
| All           | 32.1% | 2.7% |

# Conclusion

- Database gathered
- Stability-Based Features (SF) introduced
- SF useful for smiled/shaking vowel classification (contribution to a lower error rate)



K. El Haddad, S. Dupont, H. Cakmak, T. Dutoit, "Towards a Level Assessment System of Amusement in Speech Signals: Amused Speech Components Classification", International Symposium on Signal Processing and Information Technology (ISSPIT 2015), pp. 12-17, Abu Dhabi, UAE, 7-10 December

### Features:

- **FO**:
  - 1. 20 ms window shifted by 10 ms
  - 2. Mean and StD of F0
- MFCC:
  - 1. 20 ms window shifted by 10 ms
  - 2. Mean of each of 12 coefficients + 0th coefficients
- Stability-based features:
  - **1.** StD of F0 and Δ F0 residuals
  - 2. StD of log Power residuals and  $\Delta$  log Power
  - 3. Finally: log of 1) and 2) due to skewness

K. El Haddad, S. Dupont, H. Cakmak, T. Dutoit, "Towards a Level Assessment System of Amusement in Speech Signals: Amused Speech Components Classification", International Symposium on Signal Processing and Information Technology (ISSPIT 2015), pp. 12-17, Abu Dhabi, UAE, 7-10 December

#### **Previous pipeline:**



K. El Haddad, S. Dupont, H. Cakmak, T. Dutoit, "Towards a Level Assessment System of Amusement in Speech Signals: Amused Speech Components Classification", International Symposium on Signal Processing and Information Technology (ISSPIT 2015), pp. 12-17, Abu Dhabi, UAE, 7-10 December

16



K. El Haddad, S. Dupont, H. Cakmak, T. Dutoit, "Towards a Level Assessment System of Amusement in Speech Signals: Amused Speech Components Classification", International Symposium on Signal Processing and Information Technology (ISSPIT 2015), pp. 12-17, Abu Dhabi, UAE, 7-10 December

#### **Error Rates of different systems:**

| System   | SF    | MFCC  | fO    |
|----------|-------|-------|-------|
| kNN      | 28.2% | 31%   | 33.9% |
| SVM-Lin  | 25.3% | 31.2% | 38.1% |
| SVM-Poly | 24.4% | 29.1% | 30.8% |
| NN       | 23.8% | 30.4% | 29.9% |

| System   | SF+MFCC | SF+F0  | MFCC+f0 | All   |
|----------|---------|--------|---------|-------|
| kNN      | 27.8%   | 25,9%  | 28.37%  | 26.9% |
| SVM-Lin  | 27.07%  | 23.1%  | 28.7%   | 25.2% |
| SVM-Poly | 27.7%   | 21.04% | 27.4%   | 27.6% |
| NN       | 26%     | 21.9%  | 27,9%   | 25%   |

K. El Haddad, S. Dupont, H. Cakmak, T. Dutoit, "Towards a Level Assessment System of Amusement in Speech Signals: Amused Speech Components Classification", International Symposium on Signal Processing and Information Technology (ISSPIT 2015), pp. 12-17, Abu Dhabi, UAE, 7-10 December

## Perspectives

- Increasing the amount of data
- > New features? New technique (Shapelets)?
- > Mapping the components to amusement levels
- ➢ Real-time system