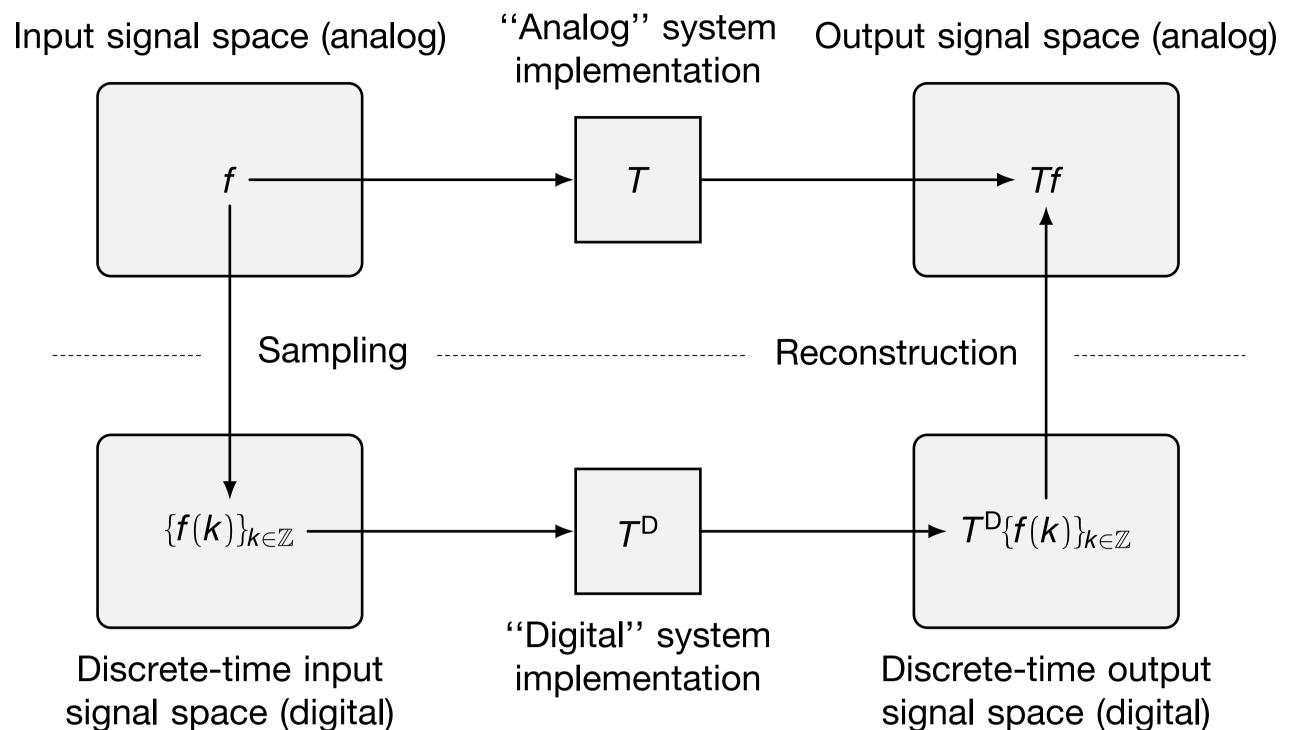


ENERGY BLOWUP FOR TRUNCATED STABLE LTI SYSTEMS

Introduction

Analog vs. digital implementation of a stable LTI system T



Signal reconstruction (classical sampling): Reconstruct a bandlimited signal *f* from its samples $\{f(k)\}_{k\in\mathbb{Z}}$.

Sampling series:

 $f(t) = \sum_{k=-\infty}^{\infty} f(k) \frac{\sin(\pi(t-k))}{\pi(t-k)}$

System approximation: Approximate the output *Tf* of a stable LTI system T from the samples $\{f(k)\}_{k\in\mathbb{Z}}$ of the input signal f.

 $(Tf)(t) = \sum f(k)h_T(t-k)$ Approximation process 1: $(Tf)(t) = \sum f(t-k)h_T(k)$ Approximation process 2:

The interpolation kernel is $h_T = T$ sinc.

Notation

Paley–Wiener space \mathcal{PW}_{σ}^2 : Space of signals *f* with a representation $f(z) = 1/(2\pi) \int_{-\sigma}^{\sigma} \hat{f}(\omega) e^{iz\omega} d\omega, z \in \mathbb{C}$, for some $\hat{f} \in L^2[-\sigma, \sigma]$. Norm: $\|f\|_{\mathcal{PW}^2_{\sigma}} = (1/(2\pi) \int_{-\sigma}^{\sigma} |g(\omega)|^2 \,\mathrm{d}\omega)^{1/2}.$

Stable LTI systems: A linear system $T : \mathcal{PW}_{\pi}^2 \to \mathcal{PW}_{\pi}^2$ is called stable linear time invariant (LTI) system if:

• T is bounded, i.e., $||T|| = \sup_{\|f\|_{\mathcal{PW}^2} \leq 1} ||Tf||_{\mathcal{PW}^2_{\pi}} < \infty$ and

• T is time invariant, i.e., $(Tf(\cdot - a))(t) = (Tf)(t - a)$ for all $f \in \mathcal{PW}_{\pi}^2$ and $t, a \in \mathbb{R}$.

Representation: For every stable LTI system $T : \mathcal{PW}_{\pi}^2 \to \mathcal{PW}_{\pi}^2$ there is exactly one function $\hat{h}_T \in L^{\infty}[-\pi,\pi]$ such that (Tf)(t) = 0 $\frac{1}{2\pi}\int_{-\pi}^{\pi}\hat{h}_{T}(\omega)\hat{f}(\omega)e^{i\omega t} d\omega$ for all $f \in \mathcal{PW}_{\pi}^{2}$. We have $h_{T} = T$ sinc.

SPTM-P17.7: Adaptive Filters/System Identification

Signal Reconstruction

Shannon sampling series:

 $(\mathbf{S}_{N}\mathbf{f})(\mathbf{t}) = \sum_{k=-N}^{N} \mathbf{f}(k) \frac{\sin(\pi(\mathbf{t}-\mathbf{k}))}{\pi(\mathbf{t}-\mathbf{k})}$

Convergence in the \mathcal{PW}_{π}^{2} **-norm:**

$\lim_{N\to\infty}\int_{-\infty}^{\infty}|f(t)-(S_Nf)(t)|^2$

Basics of System Approximation

System approximation process 1: The time variable $t \in \mathbb{R}$ is in the argument of h_T .

$$(T_N^{(1)}f)(t) = \sum_{k=-N}^N f(k)h_T(t-t)$$

For all $f \in \mathcal{PW}_{\pi}^2$ and all stable LTI systems T

norm convergence:	$\lim_{N\to\infty}\int_{-\infty}^{\infty}\Big (Tf)(t)\Big $
and	$J \rightarrow \infty J \rightarrow \infty$

uniform convergence:

 \rightarrow The system approximation process $T_N^{(1)}f$ converges in the \mathcal{PW}_{π}^2 norm and uniformly on the real axis.

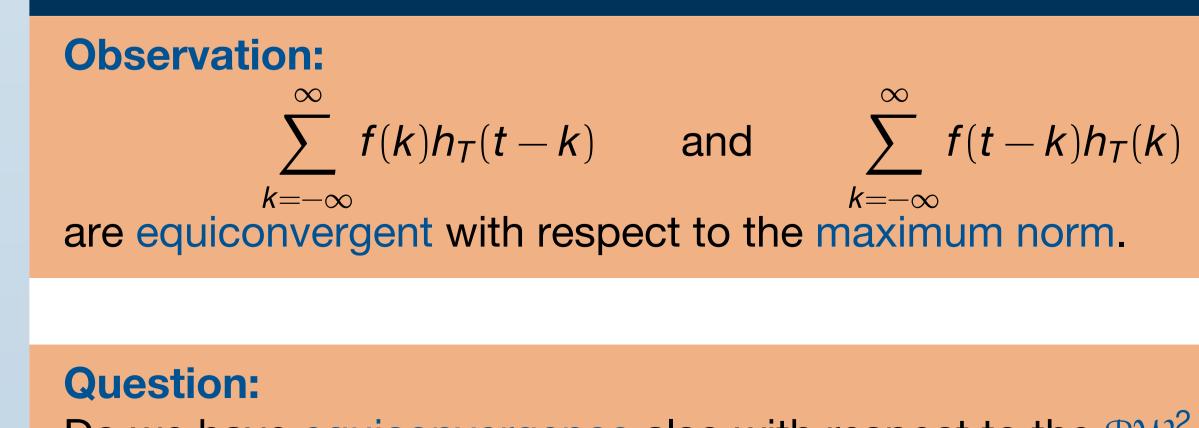
System approximation process 2: The time variable $t \in \mathbb{R}$ is in the argument of f.

 $(T_N^{(2)}f)(t) = \sum_{k=-N}^{N} f(t-k)h_T(k), \quad t \in \mathbb{R}$

uniform convergence:

 $\rightarrow T_N^{(1)} f$ and $T_N^{(2)} f$ have the same global convergence behavior.

Question



Technische Universität München

Holger Boche and Ullrich J. Mönich Lehrstuhl für Theoretische Informationstechnik

$$({m k})) \over)$$
, $t\in \mathbb{R}.$

$$dt = 0$$

 $(\mathbf{k}), \quad \mathbf{t} \in \mathbb{R}$

$$T: \mathcal{PW}_{\pi}^{2} \to \mathcal{PW}_{\pi}^{2} \text{ we have}$$

$$T: \mathcal{PW}_{\pi}^{2} \to \mathcal{PW}_{\pi}^{2} \text{ we have}$$

$$T: \mathcal{PW}_{\pi}^{2} \to \mathcal{PW}_{\pi}^{2} \text{ we have}$$

 $\lim_{N\to\infty}\max_{t\in\mathbb{R}}\left|(Tf)(t)-(T_N^{(1)}f)(t)\right|=0.$

For all $f \in \mathcal{PW}_{\pi}^2$ and all stable LTI systems $T: \mathcal{PW}_{\pi}^2 \to \mathcal{PW}_{\pi}^2$ we have $\lim_{N\to\infty}\max_{t\in\mathbb{R}}\left|(Tf)(t)-(T_N^{(2)}f)(t)\right|=0.$

(*)

Do we have equiconvergence also with respect to the \mathcal{PW}_{π}^2 -norm?

Linear Structures / Spaceability

Linearity is an important property of signal spaces. Lineability and spaceability are two mathematical concepts to study the existence of linear structures in general sets.

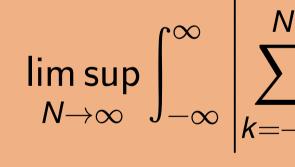
Definition: A subset S of a Banach space X is said to be lineable if $S \cup \{0\}$ contains an infinite dimensional subspace. A subset S of a Banach space X is said to be spaceable if $S \cup \{0\}$ contains a closed infinite dimensional subspace.

Easy to see linear structure for convergence: • f_1, f_2 such that (*) converges \Rightarrow convergence for $f_1 + f_2$ Difficult to show a linear structure for divergence: • f_1, f_2 such that (*) diverges \Rightarrow not necessarily divergence for $f_1 + f_2$

 \rightarrow For $f_1 + f_2 = 2u_c$ we do not have divergence.

 \rightarrow The sum of two signals, each of which leads to divergence, does not necessarily lead to divergence.

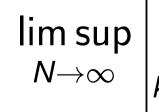
for all $f \in D_{sig}$, $f \not\equiv 0$, and all $T \in D_{sys}$, $T \not\equiv 0$, we have



 \rightarrow The system approximation process $T_N^{(2)}f$ can be divergent with respect to the L^2 -norm.

 \rightarrow The sets of functions in \mathcal{PW}_{π}^2 and energetically stable LTI systems having this property are jointly spaceable.

For \mathcal{PW}^1_{π} and LTI systems $T: \mathcal{PW}^1_{\pi} \to \mathcal{PW}^1_{\pi}$ joint spaceability can be shown even for pointwise divergence. In [BM16] it was sown that for arbitrary $t \in \mathbb{R}$ the sets of functions $f \in \mathcal{PW}^1_{\pi}$ and stable LTI systems $T: \mathcal{PW}^1_{\pi} \to \mathcal{PW}^1_{\pi}$ that satisfy



are jointly spaceable.

[BM16] H. Boche and U. J. Mönich, "Signal and system spaces with non-convergent sampling representation," in Proceedings of European Signal Processing Conference (EUSIPCO), Aug. 2016, pp. 2131–2135

Example: $f_1 = u_c + u_d$ and $f_2 = u_c - u_d$, where u_c is any signal with convergent and u_d any signal with divergent approximation process.

Energy Blowup

Let \mathcal{T} denote the set of all stable LTI systems $T: \mathcal{PW}_{\pi}^2 \to \mathcal{PW}_{\pi}^2$.

Theorem: There exist an infinite dimensional closed subspace $D_{sig} \subset$ \mathcal{PW}^2_{π} and an infinite dimensional closed subspace $D_{sys} \subset \mathcal{T}$ such that

$$\int_{-N}^{\infty} f(t-k)h_T(k) \, dt = \infty.$$

Discussion

$$\sum_{k=-N}^{N} f(t-k)h_{T}(k) = \infty$$

ICASSP 2017