Single Relay Selection for Secure Communication in a Cooperative System with Multiple Full-Duplex DnF Relays

Binh Nguyen

School of Information and Communications Gwangju Institute of Science and Technology Gwangju, Republic of Korea

November 19th, 2015

List of Contents

Introduction

• Motivation and Objective

Contribution

• Conclusive Remarks

Cooperative Communication

- Recent developments on MIMO systems show that the channel capacity can dramatically increases by using multiple transmit and receive antennas.
 - Given perfect CSI, we have $\lim_{SNR\to\infty} \frac{C(SNR)}{\log(SNR)} = \min{\{M_t, M_r\}}$, where M_t and M_r respectively are numbers of transmit and receive antennas.
- However, deployment of multiple antennas in a limited space, i.e., hand-held devices, is difficult and costly.
- This motivates the introduction of Cooperative Communications, in which single antenna systems can obtain spatial diversity by exploiting distributed antennas to create virtual MIMO channels [Cuba'12].

Fig. 1: An example of a cooperative communication system

Half-Duplex versus Full-Duplex Relay

- In cooperative systems, relays can operate either in half-duplex (HD) or in full-duplex (FD) mode.
- Half-duplex mode: a relay receives and transmits in two separate time slots.
 - Easy to implement.
 - However, it suffers from high bandwidth and spectral efficiency loss.
- Full-duplex mode: a relay receives and transmit simultaneously.
 - Recovers the bandwidth and spectral efficiency loss associated with HD mode.
 - However, it suffers from loop interference due to the signal leakage between relay's input and output.
- With recent advances on antenna technologies and signal processing, FD mode has attracted much attention recently.

Single Relay Selection

- In multi-relay scenarios, relays can be utilized according to
 - Orthogonal transmission approach.
 - Distributed space-time coding approach.
 - Beamforming approach.
 - Single relay selection approach.
- Among which single relay selection is a good option for practical implementation [Jing'09].

Schemes	Description	Pros	Cons
Orthogonal transmission	Transmission in orthogonal channels	Low complexity receiver	Spectrally inefficient
Distributed space-time coding	Simultaneous transmission using a space-time code	Spectrally efficient	Requires strict synchronization Challenging code design
Beamforming	Simultaneous transmission with phase adjustment of transmitted signals	Best performance	Requires transmit-site channel knowledge at relays Sensitive to mismatches in carrier and timing synchronization
Single relay selection	Only the 'best' relay transmits	Simplifies signaling and network synchronization Low complexity receiver	Design of selection mechanism and associated overhead

Table 1. A comparison of approaches that can be used in multi-relay scenarios

Physical Layer Security

- Even though the broadcast nature of wireless medium facilitates cooperative communication, it make wireless data transmission vulnerable to eavesdropping attack.
- Traditionally, secure wireless data transmission has been relied on cryptographic which suffers from very high communication overhead and computational complexity.
- As an alternative, physical layer security (PLS) is emerging as a promising prototype relying on exploiting the physical characteristic of wireless channels for protection against eavesdropping attack [Mukhehee'14].
- In addition, and importantly, PLS approach can operate essentially independent of higher layers, so it can be used to augment existing security schemes.

ALAN Y VAN

Motivation and Objective

- Motivation
 - Applying relay selection techniques to improve robustness against eavesdropping attack has gained a lot of interest in research community recently.
 - Secure communication in multi-HD-relay systems have extensively studied in [Krikidis'09]-[Wang'15].
 - There are only a few works consider security issues in FD relay systems [Alves'14]-[Lee'15].
 - Importantly, [Alves'14]-[Lee'15] focus on single relay configuration which may be inadequate in reality because many relays could be available.
- Objective:
 - Investigating single relay selection schemes for a multi-FD-relay system under eavesdropping attack.

Motivation and Objective

Contribution

System Model

- The considered system consist a source *S*, a destination *D*, *K* FD DnF relays, and an eavesdropper *E*.
- *h_{ij}* denotes the channel gain of *i j* link and *h_{kk}* is the self-interference channel of the relay *k*. *h_{ij}* and *h_{kk}* are subject to Rayleigh fading.
- Capacities obtained at D and E are

$$\begin{split} C_D^{R_k} &= \log_2 \left(1 + \min\left\{ \frac{\gamma_{SR_k}}{\gamma_{kk} + 1}, \gamma_{R_k} D \right\} \right), \\ C_E^{R_k} &= \log_2 \left(1 + \gamma_{R_k} E \right), \end{split}$$

where $\gamma_{ij} = \frac{P}{N_0} h_{ij}^2$.

• The system secrecy capacity is

$$C^{R_{k}} = \max\left\{0, \log_{2}\left(\frac{1 + \min\left\{\frac{\gamma_{SR_{k}}}{\gamma_{k}+1}, \gamma_{R_{k}D}\right\}}{1 + \gamma_{R_{k}E}}\right)\right\}.$$
 (3)

Fig. 2: A multi-FD-DnF-relay system is

under eavesdropping attack

RANK VIE

- Single Relay Selection Schemes
 - According to the conventional Max-Min relay selection (MRS) scheme, the relay R_m is selected if it satisfies

$$m = \arg \max_{k=1,\cdots,K} \left[\min \left\{ \frac{\gamma_{SR_k}}{\gamma_{kk}+1}, \gamma_{R_k D} \right\} \right].$$
(4)

- It is obvious that the MRS scheme is suboptimal for our considered system.
- We propose an optimal relay selection (ORS) scheme which selects a relay as follows

$$o = \arg \max_{k=1,\cdots,K} \left[\frac{1 + \min\left\{ \frac{\gamma S R_k}{\gamma_{kk} + 1}, \gamma_{R_k} D \right\}}{1 + \gamma_{R_k} E} \right].$$
(5)

 Because the ORS scheme takes the eavesdropper channels into account, it is expected to provide better system performance compared to the MRS counterpart.

Secrecy Outage Probability Analysis (1)

- We now analyze the performance of the proposed scheme by deriving its secrecy outage probability (SOP).
- As a comparison, the SOP of the conventional MRS scheme is also given.
- In addition, by considering the SOPs in the high region of average SNR of the main channels (source-to-relay and relay-to-destination), novel insights on the system behaviour are revealed.

Secrecy Outage Probability Analysis (2)

• The SOP of the MRS scheme is given by

$$SOP_{m} = \Pr\left[C^{R_{m}} < R_{S}\right]$$

$$= \frac{\lambda_{SR}}{b\lambda_{R}\lambda_{RE}} \sum_{k=1}^{K} {K \choose k} (-1)^{k} \frac{e^{-ak\left(\frac{1}{\lambda_{SR}} + \frac{1}{\lambda_{RD}}\right)} E_{k}\left(\left(1 + \frac{a\lambda_{R}}{\lambda_{SR}}\right)A\right)}{\left(1 + \frac{a\lambda_{R}}{\lambda_{SR}}\right)^{k-1} e^{-\left(1 + \frac{a\lambda_{R}}{\lambda_{SR}}\right)A}},$$
(6)

where $A = \frac{\lambda_{SR}}{b\lambda_R} \left(\frac{bk}{\lambda_{SR}} + \frac{kb}{\lambda_{RD}} + \frac{1}{\lambda_{RE}} \right)$, $a = 2^{R_s} - 1$, $b = 2^{R_s}$, $\lambda_{ij} = P\delta_{ij}^2/N_0$, $\lambda_R = P\delta_{kk}^2/N_0$, δ_{ij}^2 is variance of h_{ij} , P is transmit power of source and relays, N_0 is power of AWGN, R_s is pre-defined secure rate, and $E_k(x)$ is the exponential integral function.

• When $\lambda_{R_kE} = \lambda_E$ is fixed and $\lambda_{SR_k} = \lambda_{R_kD} = \lambda_M \to \infty$, we have

$$SOP_m \approx O\left(\frac{1}{\lambda_M^K}\right).$$
 (7)

• When $\lambda_E = \lambda_M / L$ and $\lambda_M \to \infty$, we derive

$$SOP_m \approx \sum_{k=0}^{K} {K \choose k} \frac{(-1)^k}{(1+2bk/L)}.$$
 (8)

Secrecy Outage Probability Analysis (3)

• The SOP of the optimal scheme is given by

$$SOP_{o} = \Pr\left[C^{R_{o}} < R_{S}\right]$$
$$= \left(1 - \frac{\lambda_{SR}e^{-s\left(\frac{1}{\lambda_{SR}} + \frac{1}{\lambda_{RD}}\right) + B}E_{1}(B)}{b\lambda_{R}\lambda_{RE}}\right)^{K},$$
(9)

where
$$B = \frac{\lambda_{SR}}{b\lambda_R} \left(1 + \frac{a\lambda_R}{\lambda_{SR}} \right) \left(\frac{b}{\lambda_{SR}} + \frac{b}{\lambda_{RD}} + \frac{1}{\lambda_{RE}} \right).$$

• When λ_E is fixed and $\lambda_M \to \infty$, we obtain

$$SOP_o \approx \frac{(2a+a\lambda_R+2b\lambda_{RE}+b\lambda_R\lambda_{RE})^K}{\lambda_M^K}.$$
 (10)

• When $\lambda_E = \lambda_M / L$ and $\lambda_M \to \infty$, we derive

$$SOP_o \approx \left(1 - \frac{L}{L + b(2 + \lambda_R)}\right)^K.$$
 (11)

Secrecy Outage Probability Analysis (4)

- Remarks
 - When λ_E is fixed and $\lambda_M \to \infty$, both MRS and ORS can provide a diversity order equal to the number of relays.
 - When $\lambda_E = \lambda_M/L$ and $\lambda_M \to \infty$, the SOPs of both MRS and ORS schemes converge to well-defined saturated values.

Simulation Results (1)

Fig. 3. Secrecy outage probability as a function of λ_M with K = 4 relays.

• The simulated results confirm that the MRS and ORS schemes follow the same trend in the high region of λ_M . In addition, the proposed scheme always outperform the conventional one.

Simulation Results (2)

Fig. 4. Effect of the number of relays on the system performance.

- Increasing the number of relays significantly enhances performance of both MRS and ORS schemes.
- As the number of relays increases, the gap between performance of the ORS scheme and that of the MRS scheme is enlarged.

nt	roi	-	0	Ε.	\sim	
ΠL	101	au			U I	

Conclusions

- In this work, we investigated single relay selection schemes for a multi-FD-DnF-relay system which is under eavesdropping attack.
- We proposed the ORS scheme which selects the relay that maximizes the system secrecy capacity.
- We derived the secrecy outage probabilities of the ORS and the conventional MRS schemes in closed-form expressions, which can help system designers quickly obtain system performance without doing complex computer simulations.
- We showed that ORS and MRS follow the same trend in the high region of average SNR of the main channels.
 - When average SNR of the eavesdropper channels is fixed, both schemes can provide a diversity order equal to the number of relays.
 - When average SNR of the eavesdropper channels is linear proportion to that of the main channels, the SOPs of the two schemes are saturated.

nt.	rn	а	 ct	10	
	ιu			IU	

References

- [Cuba'12] F. G. Cuba, R. A. Cacheda, and F. J. G. Castaño, "A Survey on Cooperative Diversity for Wireless Networks," *IEEE Commun. Surveys Tuts.*, vol. 14, N0. 3, pp. 822-835, Third Quarter 2012.
- [Jing'09] Y. Jing, and H. Jafarkhani, "Single and Multiple Relay Selection Schemes and their Achievable Diversity Orders," IEEE Trans. Wireless Commun., vol. 8, NO. 3, pp. 1414-1423, March 2009.
- [Mukhejee'14] A. Mukherjee, S. A. A. Fakoorian, J. Huang, and A. L. Swindlehurt, "Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey,"*IEEE Commun. Surveys Tuts.*, vol. 16, NO. 3, pp. 1550-1573, Third Quarter 2014.
- [Krikidis'09] I. Krikidis, J. S. Thompson, and S. McLaughlin, "Relay Selection for Secure Cooperative Networks with Jamming," *IEEE Trans. Wireless Commun.*, vol. 8, no. 10, pp. 5003-5011, Aug. 2009.
- [Wu'13] N. Wu and H. J. Li, "Effect of Feedback Delay on Secure Cooperative Networks with Joint Relay and Jammer Selection," *IEEE Commun. Lett.*, vol. 2, no. 4, pp. 415-418, Aug. 2013.
- [Jindal'14] A. Jindal, C. Kundu, and R. Bose, "Secrecy Outage of Dual-Hop AF Relay System with Relay Selection Without Eavesdropper's CSI," IEEE Commun. Lett., vol. 18, no. 10, pp. 1759-1762, Oct. 2014.
- [Wang' 15] L. Wang, K. J. Kim, T. Q. Duong, M. Elkashlan, "Security Enhancement of Cooperative Single Carrier Systems," IEEE Trans. Inf. Forensics Security, vol. 10, no. 1, pp. 90-113, Jan. 2015.

References

- [Alves'14] H. Alves, G. Brante, R. D. Souza, D. B. da Costa, and M. Latva-aho, "On the Performance of Full-Duplex Relaying Under Physical Security Constraints," *IEEE ICASSP*, 2014.
- [Huang'14] X. Huang, J. He, Q. Li, Q. Zhang, and J. Qin, "Optimal Power Allocation for Multicarrier Secure Communication in Full-Duplex Decode-and-Forward Relay Networks," IEEE Commun. Lett., vol. 18, no. 12, pp. 2169-2172, Dec. 2014.
- [Chen'15] G. Chen, Y. Gong, P. Xiao, and J. A. Chambers, "Physical Layer Network Security in the Full-Duplex Relay System," IEEE Trans. Inf. Forensics Security, vol. 10, no. 3, pp. 574-583, March 2015.
- [10] [Lee'15] J. H. Lee, "Full-Duplex Relay for Enhancing Physical Layer Security in Multi-Hop Relaying Systems," IEEE Commun. Lett., vol. 19, no. 4, pp. 525-528, April 2015.

Thank You

Any questions or comments are appreciated.

Binh Nguyen