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m Linear subspace estimation methods: PCA, SVD.
m Manifold Learning Methods:
m Multidimensional Scaling (MDS): Embed the data into a
graph to construct d-dimensional manifold (Tenenbaum et
al. 2000).
m Locally linear embedding (LLE)(Roweis and Saul 2000).

m Geometric Multi-resolution Analysis (GMRA): Data
dependent multi-scale dictionaries (Allard et al. 2012).

m However, these approaches are not directly applicable to
high order data, e.g. hyperspectral imaging, social and 5
biological networks.
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Introduction

m Linear Low-Rank Structure Learning:

m Higher order singular value decomposition (HOSVD)
m Parallel Factor Analysis (PARAFAC)

m Manifold Learning Methods for Tensors:

m He et al.(2005) extended locality preserving projections to
second order tensors.
m Dai and Yeung (2006) extended following embedding
methods to tensors:
B Local discriminant embedding
® Neighborhood preserving embedding
B Locality preserving projection

m These methods are mostly limited to learning the optimal
linear transformation for supervised classification of S
high-order data.
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Introduction

m Goal: Propose a unsupervised data structure learning
method to exploit locally linear low-rank structure of
high-order data.

m Two step approach:

m Decompose the tensor into subtensors.
m Apply higher order singular value decomposition (HOSVD)
to these subtensors.
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m A multidimensional array with N modes X € Rixkx-xIn jg
called a tensor, where Xx;, denotes the (iy, p, ..iy) "
element of the tensor X.

m Vectors obtained by fixing all indices of the tensor except
the one that corresponds to nth mode are called mode-n
fibers.

m Tensor matricization: The mode-n matricization of tensor
is denoted as Y () and is obtained by arranging mode-n
fibers to be the columns of the resulting matrix.

® Mode-n product: Y = X x, U yields Y, = UX(p).

m Tensor n-rank of X is the collection of ranks of mode
matrices X &
n-rank(X) = (rank(X1y), rank(X(z)), ..., rank(X(ny)) -
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Higher-Order Singular Value Decomposition (HOSVD)

Any tensor X € Rl xkx--xIv can be decomposed as:
X =38 x1 UM %, UG s UV, (1)

where U(" e Rh*hs are the left singular vectors of X, and
S € Rhxkx-xlv js the core tensor computed as:

S =& xq1 (UMN)T x5 (UGHT spy (UNYT, )
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Locally Linear High Order Singular Value
Decomposition

Goal: Low n-rank approximation to subtensors of an Nth order
tensor X € Rh<kx-xIv to better capture local nonlinearities.

m Decompose tensor X' into K subtensors
Yk € Rl with k € {1, 2,... K} by direct division
or sequential division approaches.

m Mapping functions fxs are defined on the index sets from X
to Vi as:

fk . J1 X J2 X ... X JN — J~|7k X J27k X ..o X JN,k7 (3)
where J, = {1, 2, ..., In}, Joi C {1, 2, ..., Inx} with

ne {1, 2,... N}. r
m fis satisfy UK, Jpx = Jp and Jpx N Jp; = 0 when k # [ for 'Q
allk, Ie{1,2, ..., K}. -
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ELocally Linear Higher Order Singular Value Decomposition

Locally Linear High Order Singular Value
Decomposition

m HOSVD is used to obtain the low n-rank approximation for
each Y.
m Let ) be a low n-rank approximation of Jx computed as:

Vi = Sk x1 UK 5, 0K sy QN (4)

where U("Ks are the truncated projection matrices of Vi
obtained by keeping the first r, columns of U(™X) for
ne {1, 2,... N} and S is the core tensor

Sk = D x1 (00T 5p (QRNT sy (ONYT (582
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Decomposition
m s corresponds to:
Vi = Xy Uy o .. xdy): (6)

m Combining all of the subtensors Ys by using the inverse
mapping functions fk‘1 provides piecewise-linear
approximation of X’:

(7

K
X = Zyk,(f[1(J1,k><J2,kX e XINK))
k=1
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m Translating Subspaces

m Two point clouds with 100 Gaussian random variables in
R?° were generated.

m The two subspaces in which the point clouds live are
orthogonal to each other in R1%0,

m The first point cloud is static whereas the second one is
translating in time t € {1, 2, ...60}.

m A 3-mode tensor X' € R100x200x60 jg created.

m Rotating Subspaces

m Two point clouds with 100 Gaussian random variables in
R2° were generated.
m The first point cloud is static whereas the second one is
rotating in time t € {1, 2, ...60} with the rotation matrix
cos(61) sm(et)} and 0 — { }%’ t <30 g
—sin(6t) cos(6t) g0, t>30
m A 3-mode tensor X' € R100x200x60 jg created. ol

A=lipx10®
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(c)
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i
;

m Figure 1: Low n-rank approximations of X’ are computed by HOSVD, LL-HOSVD(DD) and LL-HOSVD(SD
with various n-rank and the cluster number along each mode C = (4, 4, 4). Sample outputs for translatingucrican st

(left) and rotating (right) subspaces: (a) original slice, (b) HOSVD, (c)LL-HOSVD(DD), (d) LL-HOSVD(SD). o
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TABLE 1
AVERAGE MSE FOR THE RECONSTRUCTED 3-WAY TENSOR
2 € R100x200x60 EoR MOVING SUBSPACES BY HOSVD,
LL-HOSVD(DD) AND LL-HOSVD(SD) APPROACHES AT VARYING
n-RANK OVER 25 TRIALS.

R=(3,3,3)[R=05,5,5)[R= (7,7, 1) [R=(9,9,9)

HOSVD
0.1131 0.1006 0.0943 0.0885

LL-HOSVD(DD)
0.1029 0.0926 0.0792 0.0662

LL-HOSVD(SD)

0.0838 0.0584 0.0407 0.0285

TABLE II
AVERAGE MSE FOR THE RECONSTRUCTED 3-WAY TENSOR
2 € R100%200x60 poR ROTATING SUBSPACES BY HOSVD,
LL-HOSVD(DD) AND LL-HOSVD(SD) APPROACHES AT VARYING
n-RANK OVER 25 TRIALS.

R=(3,33)[R=(5.5,5)|R=(1,7,7)|[R = (9,9,9)

HOSVD
0.1016 0.0896 0.0786 0.0685
LL-HOSVD(DD) §\|r
0.685 0.0540 0.0474 0.0432
LL-HOSVD( SD) MICHIGAN STAﬁ

0.0493 0.0231 0.0137 0.0084 UNTVERSITY
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PIE Dataset

m A 3-mode tensor X € R122x160x138 5 created from PIE
dataset (Sim et al. 2003).

m The tensor contains 138 images from 6 different yaw
angles and varying illumination conditions collected from a
subject.

m Each image is converted to gray scale and downsampled
to 122 x 160.

[ n—rank(JA)k) = (20,25, 15) and the cluster number along
each mode is chosen as C = (4,4,4).
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L Results

PIE Dataset

Slg
m Figure 2: Frames corresponding to 3 different yaw angles obtained from approximated low n-rank tensor: @
(a) original image, (b) HOSVD, MSE = 439.0140, (c) LL-HOSVD(DD), MSE = 140.6469, (d)

LL-HOSVD(SD), MSE = 378.3899 MICHCGAN STATE
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Conclusions & Future Work

Future work:

m Selection of parameters in the algorithm: the number of
clusters and the appropriate rank.

m Adapting the method to dynamic tensors for identifying
structural changes to the tensor in time.

m Combining the algorithm with the multiscale structure of
GMRA to obtain a multi-resolution tree structure for high
order datasets.

m Learning multiresolution tree structure provides better
compression rate than HOSVD.
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