Saliency Guided Wavelet Compression for Low-Bitrate Image and Video Coding

Souptik Barua¹, Kaushik Mitra², and Ashok Veeraraghavan¹

¹ Rice University, ² Indian Institute of Technology, Madras

December 16, 2015

MOTIVATION

Image/video coding so far has been studied keeping in mind a particular end user in mind

Image/video coding so far has been studied keeping in mind a particular end user in mind

A new end user has emerged in the last 10 years!

A new end user has emerged in the last 10 years!

Image coding for Computer Vision tasks such as Object Detection?

Image coding for Computer Vision tasks such as Object Detection?

http://host.robots.ox.ac.uk:8080/pascal/VOC/voc2007/examples/person_06.jpg

DJI Phantom drone 4K video capture

DJI Phantom drone 4K video capture

Scene

Issues

DJI Phantom drone 4K video capture

Scene

ISP

*https://en.wikipedia.org/wiki/Satellite_Internet_access

Let's visit the JPEG pipeline!

JPEG Pipeline

Lets remove some pieces, and add some!

JPEG Pipeline

SBC: Related work

- JPEG-2000 ROI Encoder (2000)
- Bitplane-by-Bitplane Shift [Wang *et al* (2003)]
- Visual attention guided compression algorithms [Guo *et al* (2011), Shen *et al* (2013), Hadizadeh *et al*(2014)]

Limitations:

- Can handle only *two* levels of saliency
- Difficulty in *integrating* with JPEG-2000
- Underperforms when end application is *object detection*

- Wavelets provide the localization property.
 - An object can be compactly represented by a few wavelet coefficients

• Haar Wavelets

Wavelet transform (level = 1)

Wavelet transform (level = 2)

/avelet transforn (level = 3)

How JPEG-2000 orders wavelet coefficients?

SBC: Wavelet saliency computation

Original image

SBC: Wavelet saliency computation

Original image

Image saliency map

Image saliency map

No saliency; Ordering as per wavelet level (JPEG-2000)

No saliency; Ordering as per wavelet level (JPEG-2000)

All Salient coefficients first; non-salient later

No saliency; Ordering as per wavelet level (JPEG-2000)

All Salient coefficients first; non-salient later

Flexibility in deciding relative importance of different objects in the image!

Original image

.

Image saliency map

Original image

Original image

Image saliency map

Original image

Image saliency map

		, * , * * * *** , * , * * **** , * * * *
Wavelet saliency map Level 1	Wavelet saliency map Level 2	Wavelet saliency map Level 3

RGB Image

ENCODER

ENCODER

Wavelet transform

ENCODER

ENCODER

ENCODER

RICE

ENCODER

ENCODER

RESULTS: DETECTION PERFORMANCE

UMD Remote Faces dataset*

6MP RGB images of people at large distances

We'll apply **OpenCV's face detector** to JPEG, JPEG-2000 and SBC compressed images

	JPEG		JPEG - 2000		SBC	
	TDR	FPR	TDR	FPR	TDR	FPR
bpp	(%) ($\times 10^{-4}\%)$	(%) ($\times 10^{-4}\%)$	(%) ($\times 10^{-4}\%)$
0.02	-	-	84.8	2.5	88.7	1.5
0.04	37.2	0.2	86.0	2.5	88.7	1.6
0.06	59.5	0.5	88.0	2.8	89.5	2.1
0.08	82.9	0.9	88.0	2.8	89.5	2.3
0.10	89.5	1.6	89.5	2.4	89.5	2.3

Comparison of Face Detection performance for JPEG, JPEG-2000 and SBC using the popular Viola-Jones face detector

bpp: bits per pixel

	JPEG		JPEG - 2000		SBC	
bpp	$\frac{TDR}{(\%)}$ ($\frac{FPR}{\times 10^{-4}\%}$	\overline{TDR} (%) ($\frac{FPR}{\times 10^{-4}\%}$	\overline{TDR} (%) ($FPR \times 10^{-4}\%$
$\frac{0.02}{0.02}$	-	-	84.8	2.5	88.7	1.5
0.04	37.2	0.2	86.0	2.5	88.7	1.6
0.06	59.5	0.5	88.0	2.8	89.5	2.1
0.08	82.9	0.9	88.0	2.8	89.5	2.3
0.10	89.5	1.6	89.5	2.4	89.5	2.3

Comparison of Face Detection performance for JPEG, JPEG-2000 and SBC using the popular Viola-Jones face detector

TDR: True Detection Rate (It's a face, and you say face)

			>				
	JPEG		JPEG - 2000		SBC		
bpp	TDR (%) ($\frac{FPR}{\times 10^{-4}\%}$	TDR (%) ($FPR \\ \times 10^{-4}\%)$	TDR (%) ($FPR \\ \times 10^{-4} q$	%)
0.02	-	-	84.8	2.5	88.7	1.5	
0.04	37.2	0.2	86.0	2.5	88.7	1.6	
0.06	59.5	0.5	88.0	2.8	89.5	2.1	
0.08	82.9	0.9	88.0	2.8	89.5	2.3	
0.10	89.5	1.6	89.5	2.4	89.5	2.3	

Comparison of Face Detection performance for JPEG, JPEG-2000 and SBC using the popular Viola-Jones face detector

FPR: False Positive Rate (It's NOT a face, and you say face)

	JPEG		JPEG - 2000		SBC	
bpp	TDR (%)	$FPR (\times 10^{-4}\%)$	TDR (%) ($FPR \\ \times 10^{-4}\%)$	TDR (%)	$FPR (\times 10^{-4}\%)$
0.02	_	-	84.8	2.5	88.7	1.5
0.04	37.2	0.2	86.0	2.5	88.7	1.6
0.06	59.5	0.5	88.0	2.8	89.5	2.1
0.08	82.9	0.9	88.0	2.8	89.5	2.3
0.10	89.5	1.6	89.5	2.4	89.5	2.3

Comparison of Face Detection performance for JPEG, JPEG-2000 and SBC using the popular Viola-Jones face detector

SBC: Image Compression performance

0.07 bpp

SBC: Image Compression performance

PSNR vs bpp for UMD Faces dataset

SBC: Image Compression performance

Original Image

Original Image

High saliency (saliency value = 17)

Original Image

Medium saliency (saliency value = 5)

Original Image

RICE

Original Image

Saliency Map

SBC Image (0.07bpp)

SBC: Multi-level Saliency performance

Original

Reconstructed

VIRAT Video Dataset*

720p/1080p HD surveillance videos

SBC: Video compression performance

FUTURE WORK

- Use different wavelets such as Daubechies
- Quantify the improved runtime performance of the SBC object detection pipeline
- Investigate the possibility of using motion estimation for the same object over different frames [Chien *et al* 2008]

CONCLUSION

- A saliency guided wavelet compression scheme for images/videos; tailored towards the object detection task in ultra-low bitrate scenarios
 - Detect objects in the raw captured frames
 - Compress object regions less compared to non-object regions
- Introduced the concept of wavelet saliency map: a flexible way of ordering wavelet transform coefficients
- Better face detection performance compared to JPEG/JPEG-2000
- Better image compression performance compared to JPEG/JPEG-2000
- Video compression and tracking performance at best comparable with MPEG-4 AVC
 RICE[®]