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Introduction

 While in school, students are busy in studying for a 
better future.
 Students rarely have the opportunity to practice interview for

work or study. 
 If students are afraid or nervous during the interview, 

 they can not answer questions asked by the interviewers
properly.
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Motivation and Goal

 In this study, we proposed a coaching system to 
improve user’s interview skills.
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Motivation and Goal

 How to select a proper question plays an important 
role in a coaching system. 
 Dialog state tracker and dialog action selection model 

need to be constructed first.
 According to the information provided, a coaching system can 

select a proper question to ask users.
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Data collection and annotation

 Interview dialog corpus collection:
 The domain of the corpus is chosen as the College

Admission Interview.
 12 participants were invited.
 During corpus collection, two participants completed the 

interview without prior design questions and answers.
 A total of 75 dialogs with 540 question and answer pairs were 

collected.
 Average number of sentences for each answer is 3.95.
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Data collection and annotation

 According to the collected corpus,
 6 categories and 10 semantic slots were defined.
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Category Semantic Slot

Studying experiences
Community and cadres

Score and other achievement

Interests, and strengths and 
weaknesses

Interest

Strength and weakness

Learning motivation and future 
prospects

Motivation

Reading plans and future plans

Domain knowledge
Professional field and curriculum

Programming language and specialized terms

Personality trait Personality

Others Others



System Framework
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Word embedding model

 Each word is mapped to its corresponding word vector 
𝒘𝒘𝒊𝒊 by using word2vec.
 Word2vec creates vectors that are distributed numerical 

representations of word features, such as the context of 
individual words.

 The purpose and usefulness of word2vec is to group the 
vectors of similar words together in the vector space.

 Word2vec encodes each word in a vector and trains words 
against other words that neighbor them in the input corpus.
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Word embedding model

 This study uses the Skip-gram model.
 We use Chinese Gigaword corpus to train word2vector.
 Totally, 42619 words were obtained.
 The word vector is connected to the vector representation of 

the sentence.
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Sentence LSTM

Dialogue State Tracking

 Sentence and answer hidden vector representation:
 Considering semantic representation of each sentence in an 

answer.
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Dialogue State Tracking

 Dialog state representation:
 Using 10 ANN models, each for one slot.
 The input of ANNs is the answer hidden vector.
 Compose all slot values to form a dialog state
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Dialog Action Selection

 Training action selection model and question 
generation model.
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Dialog Action Selection

 Deep Q network Pre-training
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Experimental setup

 Action selection model
 Reward curve was approximate to 1
Deep Q-network nodes:100
Mini-batch:64
Experience size:10000
Number of Training Simulated Dialogs : 1000
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Experimental results (1)

 Evaluation the action selection model with 
different reward function
 1-0 reward function :

 Number of completed actions:

 SimpleDS reward function:
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• 𝑁𝑁𝑎𝑎𝑡𝑡 is the number of the i-th action which has been positively confirmed at time t
• AR  is the number of actions positively confirmed divided by the actions to confirm 
• CR is the number of slots positively confirmed divided by the slots to confirm, DR as )𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡

Reward function Slots-turns ratio 
(slots/turn)

1-0 reward 0.92

Completed actions 0.89

SimpleDS 0.86



Experimental results (2)

 We analyze the average number of completed slots, the 
average dialog turns and their ratio with different 
architectures.
 Testing with 1000 simulated dialogs.
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Avg. Number of 
Completed slots

Avg. 
turns

Standard 
Deviation (turns)

Slots-turns ratio 
(slots/turn)

w-Restriction + w/Pre-training 7.77 8.44 0.75 0.92

w-Restriction + w/o-Pre-training 7.74 8.51 0.74 0.91

w/o-Restriction + w/Pre-training 7.04 8.40 4.04 0.84

w/o-Restriction + w/o-Pre-training 7.82 10.56 2.63 0.74

w : with, w/o : without



Experimental results (3)

 Question selection model evaluation:
 We use questionnaire to evaluate Naturalness and Utility

 Naturalness : The semantic content of question from system is ideal
Utility : The system flow is applicable

 5 subjects were invited
 5-level Likert scale
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Mean Standard Deviation t-value

Naturalness 3.80 0.447 4.00**

Utility 3.60 0.548 2.45**



Conclusions

 We propose an approach for dialog state tracking and 
dialog action selection in an interview conversation.
 The word2vec model is employed for word distributed 

representation.
 The LSTM+ANN-based model is used to predict dialog states.
 The deep RL-based model is used to learn the relation between 

dialog states and actions..

 In the future, a richer interview corpus and a robust DST 
model are helpful to improve system performance.
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