Farzad Farhadzadeh ¹ Frans M.J. Willems ¹ Sviatoslav Voloshynovskiy²

¹Electrical Engineering Department, Eindhoven University of Technology, The Netherlands

²Computer Science Department, University of Geneva, Switzerland

November, 2015

Workshop on Information Forensics and Security (WIFS' 15)

Outline

Introduction

General Model

Code-based Model

Conclusions & Future work

Motivation Digital content/Physical objects

and the state of the state of the state

Online sharing services

Goals

- o Identification: origin, ownership, etc.
- Monitoring
- Automatic tagging

Motivation Digital content/Physical objects

Online sharing services

- Goals
 - o Identification: origin, ownership, etc.
 - Monitoring
 - Automatic tagging
- Main concerns
 - Performance
 - Search complexity
 - Memory complexity
 - Security and Privacy

- Digital Watermarking (DWM)
- Passive Content FP (PCFP)
- Active Content FP (ACFP)

- Digital Watermarking (DWM)
- Passive Content FP (PCFP)
- Active Content FP (ACFP)

- Main idea
 - \circ image identification based on host-independent mark embedding (ID \rightarrow WM)

- Digital Watermarking (DWM)
- Passive Content FP (PCFP)
- Active Content FP (ACFP)

- Main idea
- Main properties
 - host interference cancellation
 - identification performance \equiv WM power
 - $\circ \ {\rm structured \ code} \Rightarrow {\rm low} \\ {\rm identification \ complexity}$

- Digital Watermarking (DWM)
- Passive Content FP (PCFP)
- Active Content FP (ACFP)

- Main idea
 - $\circ~$ identification based on content features (content \rightarrow FP \rightarrow ID)

- Digital Watermarking (DWM)
- Passive Content FP (PCFP)
- Active Content FP (ACFP)

- Main idea
 - $\circ~$ identification based on content features (content \rightarrow FP \rightarrow ID)
- Main properties
 - no modifications
 - o identification performance ≡ content feature power
 - random code ⇒ high identification complexity

- Digital Watermarking (DWM)
- Passive Content FP (PCFP)
- Active Content FP (ACFP)

- Main idea
 - similar to PCFP (content \rightarrow FP \rightarrow ID)
 - but modify content to
 - increase identification performance
 - reduce search complexity

¹Voloshynovskiy et al,. Active content fingerprinting: A marriage of digital watermarking and content fingerprinting, IEEE WIFS'12.

²F. Farhadzadeh and S. Voloshynovskiy, Active Content Fingerpriting, IEEE Trans. TIFS'14.

- Digital Watermarking (DWM)
- Passive Content FP (PCFP)
- Active Content FP (ACFP)

- Main idea
 - similar to PCFP (content \rightarrow FP \rightarrow ID)
 - but modify content to
 - increase identification performance
 - reduce search complexity
- Main properties
 - content modulation (but no need in interference cancellation)
 - $\circ \ \ \text{modulated content} \equiv \text{content} \\ \text{feature power} \Rightarrow \text{performance}$
 - \circ potentially structured code \Rightarrow low identification complexity

ACFP references¹²

¹Voloshynovskiy et al,. Active content fingerprinting: A marriage of digital watermarking and content fingerprinting, IEEE WIFS'12.

²F. Farhadzadeh and S. Voloshynovskiy, Active Content Fingerpriting, IEEE Trans. TIFS'14.

Identification Setup (PCFP)

Identification Setup (PCFP)

Identification rate R is called achievable, if for any $\epsilon > 0$ there exist for large enough N, decoders such that

$$\frac{1}{N}\log_2 M \ge R - \epsilon,$$
$$P_{\mathcal{E}} \le \epsilon.$$

Error probability:

$$P_{\mathcal{E}} \stackrel{\Delta}{=} \frac{1}{M} \sum_{w=1}^{M} \Pr\{\widehat{W} \neq w | W = w\}$$

Theorem

Capacity of an identification system C_{id} , supremum of all achievable rates, is given by 3

$$C_{id}=I(X;Y),$$

where $P(x, y) = Q_s(x)Q_c(y|x)$ for all $x \in \mathcal{X}, y \in \mathcal{Y}$.

 3 Willems et al, On the capacity of a biometrical identification system, IEEE ISIT'03. F. Farhadzadeh

Model Description (ACFP)

Model Description (ACFP)

Identification rate-distortion pair (R, Δ) is called achievable, if for any $\epsilon > 0$ there exist for large enough *N*, decoders such that

$$\frac{1}{N} \log_2 M \ge R - \epsilon,$$
$$\overline{D_{xy}} \le \Delta + \epsilon,$$
$$P_{\mathcal{E}} \le \epsilon.$$

Modification distortion:

$$\overline{D_{xy}} = \frac{1}{N} E\left[\sum_{n=1}^{N} D_{xy}(X_n, Y_n)\right]$$

General Model

L_Statement of Result

Statement of Result

Theorem

The region of achievable rate-distortion pair (R, Δ) for the identification system using ACFP is given by 4

$$\begin{cases} (R, \Delta) : R \le I(Y; Z), \\ \Delta \ge \sum_{x, y} Q_s(x) P_t(y \mid x) D_{xy}(x, y), \\ for P(x, y, z) = Q_s(x) P_t(y \mid x) Q_c(z \mid y) \end{cases}$$

⁴Farhadzadeh, Willems, and Voloshynovskiy, Information theoretical analysis of identification based on active content fingerprinting, WIC'14.

General Model

L_Statement of Result

Statement of Result

Theorem

The region of achievable rate-distortion pair (R, Δ) for the identification system using ACFP is given by 4

$$\begin{cases} (R, \Delta) : R \le I(Y; Z), \\ \Delta \ge \sum_{x, y} Q_s(x) P_t(y \mid x) D_{xy}(x, y), \\ for P(x, y, z) = Q_s(x) P_t(y \mid x) Q_c(z \mid y) \end{cases}$$

Capacity of an identification system using ACFP, supremum of all achievable rates for a given $\Delta,$ is given by

$$C_{ACFP}(\Delta) = \max_{P_t(y|x): \sum_{x,y} Q_s(x)P_t(y|x)D_{xy}(x,y) \leq \Delta} I(Y;Z)$$

⁴Farhadzadeh, Willems, and Voloshynovskiy, Information theoretical analysis of identification based on active content fingerprinting, WIC'14.

F. Farhadzadeh

└─ Gaussian Setup

Gaussian Setup

Let's X^N be distributed i.i.d. according to a Gaussian with variance V_X and mean zero, and $Q_c(z|y)$ be AWGN with variance V_Z .

Gaussian Setup

Gaussian Setup

Let's X^N be distributed i.i.d. according to a Gaussian with variance V_X and mean zero, and $Q_c(z|y)$ be AWGN with variance V_Z .

Theorem

Considering distortion as the mean-squared error, the capacity of identification using ACFP is given by

$$\mathcal{C}_{ACFP}(\Delta) = rac{1}{2}\log_2\left(1+rac{(\sqrt{V_X}+\sqrt{\Delta})^2}{V_N}
ight)$$

achieved by $Y^N = fX^N$, such that $(f - 1)^2 V_X = \Delta$.

Gaussian Setup

└─ Gaussian Setup

Signal-to-Distortion Ratio (SDR)=5dB

Gaussian Setup

Gaussian Setup

 $^{6}\mathsf{Costa},$ Writing on dirty paper, IEEE Trans. Information Theory , 1983. F. Farhadzadeh

└─ _{Gaussian} Setup

Comparison of identification methods

Chain: $X \rightarrow Y \rightarrow Z$

$$C_{DWM} = rac{1}{2} \log_2 \left(1 + rac{\Delta}{V_N}
ight)$$

General Model

Gaussian Setup

Comparison of identification methods

Chain: $X \to Y \to Z$

$$C_{DWM} = rac{1}{2} \log_2 \left(1 + rac{\Delta}{V_N}
ight) \qquad C_{id} = rac{1}{2} \log_2 \left(1 + rac{V_X}{V_N}
ight)$$

General Model

└─ _{Gaussian} Setup

Comparison of identification methods

Chain: $X \to Y \to Z$

$$C_{DWM} = \frac{1}{2} \log_2 \left(1 + \frac{\Delta}{V_N} \right) \qquad C_{id} = \frac{1}{2} \log_2 \left(1 + \frac{V_X}{V_N} \right) \qquad C_{ACFP} = \frac{1}{2} \log_2 \left(1 + \frac{(\sqrt{\Delta} + \sqrt{V_X})^2}{V_N} \right)$$

$$(x^N = y^N)$$

$$(x^N$$

Code-based ACFP

Code-based Model

L_statement of Result

Code-based ACFP

Theorem

The region of achievable rate-distortion pair (R, Δ) for the identification system using code-based ACFP is given by

$$\begin{cases} (R, \Delta) : R \leq I(Y; Z), \\ I(X, Y) \leq I(Y; Z), \\ \Delta \geq \sum_{x, y} Q_s(x) P_t(y \mid x) D_{xy}(x, y), \\ \text{for } P(x, y, z) = Q_s(x) P_t(y \mid x) Q_c(z \mid y) \end{cases}.$$

└─ Gaussian Setup

Gaussian Setup

Let's X^N be distributed i.i.d. according to a Gaussian with variance V_X and mean zero, and $Q_c(z \mid y)$ be AWGN with variance V_Z .

Code-based iviodel

Gaussian Setup

Gaussian Setup

Let's X^N be distributed i.i.d. according to a Gaussian with variance V_X and mean zero, and $Q_c(z \mid y)$ be AWGN with variance V_Z .

Theorem

Considering distortion as the mean-squared error, the maximum identification rate using code-based ACFP is given by

$$R^*_{ACFP(CB)}(\Delta) = rac{1}{2}\log_2\left(rac{1}{1-
ho^2}
ight)$$

where $\rho = \textit{E}[\textit{XY}]/\sqrt{\textit{V}_{\textit{X}}\textit{V}_{\textit{Y}}}$ and $(1-\Delta/\textit{V}_{\textit{X}}) \leq \rho^2 < 1$ is a solution of

$$2\rho^{2} + 2\rho \sqrt{\rho^{2} - \left(1 - \frac{\Delta}{V_{X}}\right) - \left(1 - \frac{\Delta}{V_{X}}\right)} = \frac{V_{N}}{V_{X}} \left(\frac{\rho^{2}}{1 - \rho^{2}}\right).$$

L Code-based woder

Gaussian Setup

Gaussian Setup

Let's X^N be distributed i.i.d. according to a Gaussian with variance V_X and mean zero, and $Q_c(z \mid y)$ be AWGN with variance V_Z .

Theorem

Considering distortion as the mean-squared error, the maximum identification rate using code-based ACFP is given by

$$R^*_{ACFP(CB)}(\Delta) = rac{1}{2}\log_2\left(rac{1}{1-
ho^2}
ight)$$

where $\rho = \textit{E}[\textit{XY}]/\sqrt{\textit{V}_{\textit{X}}\textit{V}_{\textit{Y}}}$ and $(1-\Delta/\textit{V}_{\textit{X}}) \leq \rho^2 < 1$ is a solution of

$$2\rho^{2} + 2\rho \sqrt{\rho^{2} - \left(1 - \frac{\Delta}{V_{X}}\right) - \left(1 - \frac{\Delta}{V_{X}}\right)} = \frac{V_{N}}{V_{X}} \left(\frac{\rho^{2}}{1 - \rho^{2}}\right).$$

Remark

Contrary to General setup, $\rho = 1$ is not attainable.

Code-based Model

Gaussian Setup

Proof Outline

Any $R \leq I(Y; Z)$ subject to $I(X; Y) \leq I(Y; Z)$ is achievable with Gaussian assignment.

Remark

 $I(Y; Z) \leq \frac{1}{2} \log_2 \left(1 + \frac{V_Y}{V_N} \right)$ for Gaussian $p(y \mid x)$ and arbitrarily p(y).

Code-based Model

Gaussian Setup

Proof Outline

Any $R \leq I(Y; Z)$ subject to $I(X; Y) \leq I(Y; Z)$ is achievable with Gaussian assignment.

Remark

 $I(Y;Z) \leq \frac{1}{2} \log_2 \left(1 + \frac{V_Y}{V_N}\right)$ for Gaussian $p(y \mid x)$ and arbitrarily p(y).

$$R \leq I(Y; Z) \leq \frac{1}{2} \log_2 \left(1 + \frac{V_Y}{V_N}\right)$$
$$\frac{1}{2} \log_2 \left(\frac{1}{1 - \rho^2}\right) \leq I(X; Y) \leq I(Y; Z) \leq \frac{1}{2} \log_2 \left(1 + \frac{V_Y}{V_N}\right)$$

Code-based Model

Gaussian Setup

Proof Outline

Any $R \leq I(Y; Z)$ subject to $I(X; Y) \leq I(Y; Z)$ is achievable with Gaussian assignment.

Remark

 $I(Y; Z) \leq \frac{1}{2} \log_2 \left(1 + \frac{V_Y}{V_N} \right)$ for Gaussian $p(y \mid x)$ and arbitrarily p(y).

$$\begin{split} R &\leq I(Y;Z) \leq \frac{1}{2}\log_2\left(1 + \frac{V_Y}{V_N}\right) \\ &\frac{1}{2}\log_2\left(\frac{1}{1 - \rho^2}\right) \leq I(X;Y) \leq I(Y;Z) \leq \frac{1}{2}\log_2\left(1 + \frac{V_Y}{V_N}\right) \end{split}$$

Optimization:

$$\begin{array}{ll} \underset{V_{Y}}{\text{maximize}} & \frac{1}{2}\log_{2}\left(1+\frac{V_{Y}}{V_{N}}\right) \\ \text{subject to} & \frac{1}{2}\log_{2}\left(\frac{1}{1-\rho^{2}}\right) \leq \frac{1}{2}\log_{2}\left(1+\frac{V_{Y}}{V_{N}}\right) \\ & V_{Y}+V_{X}-2\rho\sqrt{V_{X}V_{Y}} \leq \Delta \end{array}$$

maximum occurs for such a ρ that satisfies the constraints with equality. F. Farhadzadeh

Code-based Model

└─ Gaussian Setup

Code-based Model

└─ Gaussian Setup

Code-based Model

Gaussian Setup

Code-based Model

└─ _{Gaussian} Setup

ACFP: random vs coded

$$C_{ACFP} = rac{1}{2}\log_2\left(1+rac{(\sqrt{\Delta}+\sqrt{V_X})^2}{V_N}
ight)$$

Code-based Model

└─ Gaussian Setup

ACFP: random vs coded

$$C_{ACFP} = rac{1}{2}\log_2\left(1+rac{(\sqrt{\Delta}+\sqrt{V_X})^2}{V_N}
ight)$$

$$R^*_{ACFP(CB)} = \frac{1}{2}\log_2\left(1 + \frac{1}{1-\rho^2}\right)$$

 We investigated the capacity of identification using ACFP under arbitrarily encoding scheme (random codes)

- We investigated the capacity of identification using ACFP under arbitrarily encoding scheme (random codes)
 - the optimal encoding scheme under Gaussian setup

- We investigated the capacity of identification using ACFP under arbitrarily encoding scheme (random codes)
 - the optimal encoding scheme under Gaussian setup
- We evaluated the maximum identification rate using code-based ACFP (structured codes)

- We investigated the capacity of identification using ACFP under arbitrarily encoding scheme (random codes)
 - the optimal encoding scheme under Gaussian setup
- We evaluated the maximum identification rate using code-based ACFP (structured codes)
 - the optimal encoding scheme under Gaussian setup

- We investigated the capacity of identification using ACFP under arbitrarily encoding scheme (random codes)
 - the optimal encoding scheme under Gaussian setup
- We evaluated the maximum identification rate using code-based ACFP (structured codes)
 - the optimal encoding scheme under Gaussian setup
- ▶ We showed the gap between the random and code-based ACFP

Future work

 To investigate other ACFP schemes to find optimal trade-off between complexity and performance

Future work

 To investigate other ACFP schemes to find optimal trade-off between complexity and performance

▶ To investigate ACFP in other applications like content authentication

Future work

 To investigate other ACFP schemes to find optimal trade-off between complexity and performance

- ▶ To investigate ACFP in other applications like content authentication
- To apply coded-ACFP to geometrically invariant descriptors (SPIE'16)