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Electrical grid

Picture source: FERC, “Final Report on the August 14, 2003 Blackout in the United States and Canada,” 

Apr. 2004. [Online]. http://www.ferc.gov/industries/electric/indus-act/reliability/blackout/ch1-3.pdf
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Introduction

 Pressing issues

 Demand is rising

 Fossil fuel resources are limited

 There is risk of regional blackouts 

 Advantages of distributed renewable generation
 Decentralized production-close to the point of consumption

 Bypass transmission network congestion

 Example: Photovoltaic (PV) units

 Challenge: Renewable generation has uncertainty
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Optimal PV placement and sizing
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IEEE 34-node test feeder

http://therivardreport.com/

cps-energy-proposes-leased-solar-option/

 Where to place PV units?

 Sizing: Area of panel and 
inverter capability

 Economic operation and 
voltage regulation
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Prior art and contributions

 Placement of distributed generation: Survey [Georgilakis-Hatziargyriou ’13]

 Placement & sizing of DG units without reactive power compensation

 Loss minimization [Atwa et al ’10]

 Conservation voltage reduction [Wang et al ’15]

 Unbalanced distribution systems [Dall’Anese-Giannakis ’13]

 With reactive power compensation

 Other DG: Independent real & reactive power limits, genetic alg. [Liu et al ’11]

 PVs: Linearized capability curve [Nick et al ’14]

 This work: Two-stage stochastic programming approach

 Joint optimization of real and apparent power capability

 Scenario-adaptive reactive power compensation for voltage regulation

 Minimization of installation and operation costs
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SOCP power flow equations

Change of variables

[Jabr ’06] [Low ’12] SOCP relaxation
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 Real power output is            

 is normalized irradiance

PV injection model: Real power

Load PV
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PV injection model: Reactive power

 To allow for reactive power control, size the inverter so that

where         is the apparent power capability of the inverter

 Reactive power         generated or consumed

[Turitsyn, Šulc, Backhaus, Chertkov ’10-’11]

Load PV
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Uncertainty model

 plausible scenarios for irradiance and load

 Scenario     :  irradiance      , load  

 Scenario      happens with probability   

 Scenario-dependent decision variables

 Power flows, voltages, currents

 Reactive power from the PVs

 Scenario-independent decision variables

 Placement binary decisions  

 Sizing decision         and 

Load PV
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Scenario-dependent constraints

 Power flow equations

 Reactive power

 Penetration

Sizing and adaptive 

reactive power 

compensation cast as 

SOCP
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Scenario-independent constraints

 Binary decisions

 Minimum and maximum area

 Bounds on PV power factor

 Budget on number of installations 
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Objectives

 Objective comprises first-stage and the expected second-stage costs

 Examples follow

 First-stage cost

 Installation

 Second-stage costs

 Expected thermal loss

 Expected import cost                                where  

Losses in 

scenario 𝑚
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Placement and sizing (MISOCP)
First-stage cost 

Placement and Sizing Penetration 

Reactive power 

Power flows and voltage regulation

Constraints per scenario

Constraints independent 

from scenarios

Second-stage cost 
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Numerical test setup

IEEE 34-node feeder converted to single-phase system

3 load scenarios: 50%, 100%, 150% of peak load with probabilities 

Shunt capacitors are included

Solar Direct Normal Irradiance Data from NREL for a station near San Antonio, 

June-Aug, 11:00 am – 4:00 pm  ➡ Create a histogram

Simplified scenario generation model using irradiance normalized to 1
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Numerical test : 

Objective value: 2.00 

Installation: 0.11 $ /(p.u)

Thermal loss: 0.27 (p.u)

Import: 1.62 $/(p.u)
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Numerical test : 

Objective value: 1.92 

Installation: 0.12 $/(p.u)

Thermal loss: 0.23 (p.u)

Import: 1.58 $/(p.u)
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Numerical test : 

Interestingly, this numerical instance illustrates 

that a greedy placement algorithm is not optimal

Objective value: 1.82 

Installation: 0.17 $/(p.u)

Thermal loss: 0.15 (p.u)

Import: 1.50 $/(p.u)
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Summary and future work

 Optimal placement and sizing

 Real & reactive power capability optimization cast as a SOC constraint

 Load and solar generation uncertainty

 Scenario-adaptive power flow

 Minimization of installation and operation cost

 Future work

 Placement of distributed storage (batteries) with reactive power support

 Three-phase distribution networks

Thank you!


