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Introduction 
 

What is Source Localization? 
 

Determine the position of a source 
 

 Position: , , latitude and longitude (e.g., HK 
latitude and longitude are around 22°18’ N and 114°10’ 
E,), a point on a map, street number, building, etc. 

 

 Source: target of interest, e.g., mobile phone, tablet PC, 
person, car, ship, sensor node 

 

Similar terminologies include wireless location, radiolocation 
and position location 
 

When the source is moving and we want to find the its 
trajectory versus time, it may be referred to as target 
tracking or position tracking 
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Elements in Positioning 
 

Consider finding the absolute position of a source in terms 
of , we need: 
 

 Signals emitted from the source which contain position 
information 
 

 Sensors or receivers with known coordinates which collect 
the signals 

 

 An algorithm to compute the location using the received 
signals. There are two categories: 
 Directly uses the received measurements to obtain the 

location, and it is referred to as direct approach [1] 
 First extracts location-bearing information such as 

time-of-arrival and energy estimates from the signals, 
then base on them to determine , which may be 
referred to as two-stage approach [2] 
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Applications 
 
Emergency Assistance 
 
A person with a mobile phone is in an emergency situation 
but unable to describe his location, e.g., 
 
 During a hiking activity, a person gets lost from his team 

and does not know where he is; He calls 911 and then 
the police can determine his location 

 
 A person sees a terrible accident and he calls the police; 

However, he is too afraid and cannot tell his position 
although he should know it 
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 U.S. Federal Communications Commission (FCC) has 
mandated the Enhanced 911 (E911) rules where wireless 
operators are required to provide position information of 
wireless 911 callers: 

 

http://transition.fcc.gov/pshs/services/911-
services/enhanced911/Welcome.html 

 

 Phase I: Require wireless operators to report the 
telephone number of a wireless 911 caller and the 
location of the antenna or base station that received the 
call, upon appropriate request by a local Public Safety 
Answering Point (PSAP) 

 

 Phase II: Require wireless carriers to provide more 
precise location information, within 50 to 300 meters in 
most cases  

 

http://transition.fcc.gov/pshs/services/911-services/enhanced911/Welcome.html
http://transition.fcc.gov/pshs/services/911-services/enhanced911/Welcome.html
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Personal Localization and Tracking 
 
The position of a person is known time-by-time, e.g.,  
 

 A parent can know where his child is; For example, 
the parent is notified when his child has arrived home 
or school; Or when his child gets lost in a crowded 
area, his parent can look for him easily 
http://www.positionlogic.com/industries-gps-tracking-
solutions/gps-tracking-solution-child-protection/ 
 

 A bodyguard can keep track of an important person to 
ensure his/her safety, e.g., monitoring the position of 
a president in a cocktail party 

 

 The position of a mentally impaired person, e.g., 
elderly with Alzheimer's disease can be known by his 
relative or caregiver regularly 

http://www.positionlogic.com/industries-gps-tracking-solutions/gps-tracking-solution-child-protection/
http://www.positionlogic.com/industries-gps-tracking-solutions/gps-tracking-solution-child-protection/


H. C. So                                                                        Page 8                                     

Fleet Management and Asset Tracking 
 

A user can track the location and status of a specific group 
or individual, e.g., 
 

 Hong Kong Fire Services Department employs the Third 
Generation Mobilizing System to manage fire engines and 
ambulances 

 

 Asset tracking represents the supervision of an asset, 
which includes constant reporting of its position and 
providing alert to the supervisor and client when the 
asset leaves a specific area. Company examples include 
FedEx and UPS 
 

 A manager of a logistic company can know the locations 
of the company’s vehicles and then use the position 
information to increase the transport efficiency 
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Hong Kong PCCW provides a service which marks the 
location of client’s field workforce or packages on a web-
based digital map, enabling an easy way to manage 
resources in terms of people, cargo and vehicles 

 
http://www.pccw-hkt.com/en/Location-Based-Service/ 

http://www.pccw-hkt.com/en/Location-Based-Service/
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Travel Services 
 
Provide useful information for tourists, e.g., 
 
 A tourist can consult a location system where he/she can 

go shopping or dining nearby, or to find out which is the 
fastest or cost-effective way to go to his/her next 
destination. For example, the position or requested route 
will be shown on the digital map on a mobile phone 

 

 Hong Kong Tourism Board has launched some phone and 
tablet Apps for visitors with navigation services: 

 

http://www.discoverhongkong.com/eng/plan-your-
trip/travel-kit/mobile-apps.jsp 

 
 

http://www.discoverhongkong.com/eng/plan-your-trip/travel-kit/mobile-apps.jsp
http://www.discoverhongkong.com/eng/plan-your-trip/travel-kit/mobile-apps.jsp
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Location-based Advertising and Marketing 
 

The idea is to broadcast advertisement and marketing 
information to users when they enter a geographical area: 
 

 A cinema offers a discount of watching a movie to mobile 
phone users nearby when the movie will be shown soon 

 

 When a user walks by a store, a special offer 
advertisement will ring on his mobile device 
 

 Location-based broadcaster sends a mass text to 
everyone with cell phones in the room at once 
http://www.dailymail.co.uk/sciencetech/article-
2653449/The-shocking-car-safety-ad-hijacks-
cinemagoers-mobile-phones-exactly-distracting-text-
message-be.html 

 
 

http://www.dailymail.co.uk/sciencetech/article-2653449/The-shocking-car-safety-ad-hijacks-cinemagoers-mobile-phones-exactly-distracting-text-message-be.html
http://www.dailymail.co.uk/sciencetech/article-2653449/The-shocking-car-safety-ad-hijacks-cinemagoers-mobile-phones-exactly-distracting-text-message-be.html
http://www.dailymail.co.uk/sciencetech/article-2653449/The-shocking-car-safety-ad-hijacks-cinemagoers-mobile-phones-exactly-distracting-text-message-be.html
http://www.dailymail.co.uk/sciencetech/article-2653449/The-shocking-car-safety-ad-hijacks-cinemagoers-mobile-phones-exactly-distracting-text-message-be.html
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Location-based Billing 
 

Location-based billing allows a wireless operator to charge 
different rates to mobile subscribers based on where they 
are 
 
Automated Camera Steering 
 

A representative application is video conferencing where we 
need to automatically capture the face of an active talker 
via determining his/her position. A microphone array is 
employed as the receivers for collecting the speech signals 
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Distant Speech Acquisition 
 

A distant speech corresponds to low signal-to-noise ratio 
(SNR) conditions. If we are able to locate its source, 
beamforming can then be applied to obtain the speech at 
much higher SNR  
 
Wireless Sensor Network 
 

A wireless sensor network consists of many small, 
inexpensive, low-power nodes which collect surrounding 
data, perform small-scale computations and communicate 
among their neighbors. It has great potential in numerous 
remote monitoring and control applications such as: 
 

 Smart home, e.g., when you enter a room, the light will 
be automatically turned on 
 Environmental monitoring, e.g., detection of fire source 



H. C. So                                                                        Page 14                                     

Positioning Principles and Measurement Models 
 
We consider the two-stage approach and assume that the 
location-bearing information has been extracted from the 
raw measurements in the first stage. They include: 
 
 Time-of-Arrival (TOA) 

 

 Time-Difference-of-Arrival (TDOA) 
 

 Received Signal Strength (RSS) 
 

 Direction-of-Arrival (DOA) 
 
Given the TOA, TDOA, RSS or DOA estimates, our task is to 
find source position  
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TOA 
 

One-way signal propagation time between source and 
receiver 
 

In principle, the signals can be represented as 
 

transmitted signal: )(ts  
and 

 received signal: TOA)( −ts  
 

From TOA, the distance between them can be determined: 
 

Distance =  
 

where  is the speed of light 
 
The target must lie on a circle centered at the receiver with 
radius  
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Clock synchronization among source and all receivers is 
needed 
 

Synchronization in the source is not required if two-way 
(round-trip) propagation is used 
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Let ),( ii yx  be position of the ith receiver 
 
 

Let it  be the TOA between target and ith sensor, we have: 
 

ii
i

i tcd
c
dt ⋅=⇒=  

 

where id  is the distance between them: 
 

22 )()( iii yyxxd −+−=  
 

Practically, the TOA will be subject to error: 
 

iiiiii nyyxxndr +−+−=+= 22 )()(  
 

Suppose there are M receivers, we have M equations to 
solve for the unknown ),( yx  with the known ),( ii yx . 
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TDOA 
 
In principle, signals collected at the mth and nth receivers 
are 
 

mth receiver: )TOA( mts −  
and 

nth receiver: )TOA( nts −  
 
TDOA is the difference in TOAs between two receivers: 
 

TDOAm,n = TOAm - TOAn 
 
Time synchronization is needed among all sensors only  
 
Each TDOA corresponds to one hyperbola and source 
position is given by intersection of at least two hyperbolae 
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Let 1st sensor at ),( 11 yx  be the reference and let 1,it  be the 
TDOA of the source between the ith and 1st sensors, we 
have: 
 

111
1

1 ≠⋅=⇒= itcd
c

d
t ii

i
i ,,,

,
,  

 

where 1,id  is the difference between id  and 1d : 
 

2
1

2
1

22
11 )()()()(, yyxxyyxxddd iiii −+−−−+−=−=  

 

Practically, it is not possible to obtain noise-free TDOA: 
 

1
2

1
2

1
22

111 ,,,, )()()()( iiiiii nyyxxyyxxndr +−+−−−+−=+=  
 
M sensors correspond to (M-1) TDOAs, so we have (M-1) 
equations to solve for unknown ),( yx  with known ),( ii yx  
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RSS 
 

Propagation path loss of the signal traveling from the source 
to the receiver and their distance can be computed from it.  
 

Let the power transmitted by the source be  
 

The received signal power can be expressed as: 
 

 
 

where  is the propagation constant  
 

Positioning concept is same as TOA but the distance derived 
from RSS is not very accurate 
 

Clock synchronization is not required  
 

RSS is available at current wireless network, e.g., WiFi 
(IEEE 802.11) and ZigBee (IEEE 802.15.4) 
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The received signal power at the ith sensor can be modeled 
as: 
 

 
 

where  is the transmitted power,  accounts for all factors 
which affect the received power 
 
However, the noise in RSS is log-normal distributed and the 
observed RSS in dB is: 
 

 
or 

 
 

Suppose there are M sensors to measure the RSSs, we have 
M equations to solve for ),( yx  with the known ),( ii yx  



H. C. So                                                                        Page 22                                     

DOA 
 

Arrival angle of signal from the source at the receiver and 
each corresponds to a line-of-bearing (LOB) 
 

 

Intersection of at least two LOBs gives source position 
 
 

Antenna array is required at the receiver 
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Let the DOA of signal from the source at the ith sensor be iθ , 
we get: 









−
−

=θ⇒
−
−

=θ −

i

i
i

i

i
i xx

yy
xx
yy 1tan)tan(  

 

In the presence of disturbance in , the noisy DOA 
measurement is 
 

i
i

i
iii n

xx
yynr +







−
−

=+θ= −1tan  
 

Suppose there are M receivers to measure the DOAs, we 
have M equations to solve for ),( yx  with the known ),( ii yx  
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Positioning Algorithms  
 

For simplicity, all disturbances { in } are assumed to be zero-
mean and uncorrelated with each other and have the same 
powers, i.e., independent and identically distributed (i.i.d.) 
 

Optimum Solution [2] 
 

The basic idea is to estimate the source position via 
minimizing a nonlinear least squares (NLS) cost function 
 

For TOA equations: 
 

Minyyxxndr iiiiii ,,,,)()( 2122 =+−+−=+=  
 

The NLS cost function is 
 

( )222

1
)()(),( iii

M

i
yyxxryxJ −+−−∑=

=
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The position estimate is obtained as: 
 

)},({minarg)ˆ,ˆ(
,

yxJyx
yx

=  
 

which means that when xx ˆ=  and yy ˆ= , ),( yxJ  has the 
minimum value. 
 

However, finding the minimum is difficult because of 
nonlinear ),( yxJ  and thus global solution is not guaranteed 
 

Newton’s method can be used with proper initialization: 
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For TDOA equations: 
 

Minyyxxyyxxr iiii ,,,)()()()( ,, 21
2

1
2

1
22

1 =+−+−−−+−=
 

The NLS cost function is 
 

( )222
1

22

2
)()()()(),( iiii

M

i
yyxxyyxxryxJ −+−+−+−−∑=

=
 

 
For RSS equations: 
 

 
 

 
The NLS cost function is 
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For DOA equations: 
 

Min
xx
yyr i

i

i
i ,,,tan 211 =+








−
−

= −  

 
The NLS cost function is 
 

2
1

1
















−
−

−∑= −

= i

i
i

M

i xx
yyryxJ tan),(  

 
When all disturbances { in } are Gaussian distributed, NLS is 
equivalent to maximum likelihood (ML) approach  
 

NLS is optimum but it is computationally demanding if 
stochastic approach (e.g., genetic algorithm, particle swarm 
optimization) or grid search is used and initial estimates are 
required for gradient-based techniques 
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Cramér-Rao Lower Bound (CRLB) [3] 
 
CRLB is performance bound in terms of minimum achievable 
variance provided by any unbiased estimators 
 
Its derivation requires knowledge of the noise probability 
density function (PDF) in closed-form 
 
Let be the observations where  is a known 
function,  is the vector of parameters of 
interest, and  is the noise vector. Denote its PDF by  
 
The CRLB for  can be obtained in two steps: 
 

 Compute the Fisher information matrix  
 CRLB for  is the  entry of ,   
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 has the form of: 
 

   

 
 
In our case of two-dimensional positioning,  is a 2x2 
matrix, and we use  as CRLB for location 
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Suboptimal but Simple Solutions 
 

1. Linear Least Squares (LLS) [4]-[8] 
 

Key idea is to convert nonlinear equations into linear via 
introducing extra variable and then apply least squares (LS) 
 

For TOA equations: 
 

Minyyxxndr iiiiii ,,,,)()( 2122 =+−+−=+=  
 

Squaring both sides, we have: 
 

222222 2 )()()()( iiiiiii yyxxnnyyxxr −+−++−+−=  
 
Now the noise component is 
 

222 2 )()( iiiii yyxxnnm −+−+=  
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Expanding the equation and letting 22 yxR +=  yields 
  

222

22222

22222

222

22

22

22

iiiii

iiiiii

iiiiii

iiii

yxrRyyxx

yxRmyxrRyyxx

myyyyxxxxr
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+−+−=

,

)()(

 

 
In matrix form: 

bAx ≈  
or 
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The LLS cost function is  
 

bb-bA2x-AxAx

bb-Axb-bAxAxAx

bAxbAxx

TTTTT

TTTTTT

TJ

=

=

−−=

-

)()()(

 

 
The position estimate is obtained as: 
 

)}({minargˆ xx
x

J=  
 

which can be easily obtained as 
 

( ) bAAAx

bAxAA

0b2A-xAA
x
x

TT

TT

TT
d

dJ

1

2

−
=⇒

=⇒

==

ˆ

ˆ

ˆ
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The solution is simple because 
 

 A and b are easy to construct 
 

 Only simple matrix operations are involved 
 
However, it is not optimal because 
 
 The disturbances { im } are different powers but LLS is 

optimal only for zero mean i.i.d. noises 
 

 At sufficiently large noise conditions, the means of { im } 
are not close to 0 and this also affects LLS accuracy 

 

 The introduced variable 22 yxR +=  is a function of x and y 
but this known information is not utilized in LLS 
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For TDOA equations: 
 

1
222

1
2

11

1
2

1
2

1
22

1 2
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)()()()(

,,,)()()()(

iiii
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Let 

22
1

2
1 2 )()(,, iiiii yyxxnnm −+−+=  
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2
1

2
11 )()( yyxxR −+−=  

 

Squaring both sides and rearranging the result: 
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In matrix form, we have 
 

bAx ≈  
or 
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The solution is then: 
 

( ) bAAAx TT 1−
=ˆ  

 



H. C. So                                                                        Page 36                                     

For RSS equations: 
 
 

 
 
Similar to TOA, we can get an estimate of : 
 

 
 

such that . 
 
In matrix form: 
 

bAx ≈  or  
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The solution is: 
 

( ) bAAAx TT 1−
=ˆ  

 

For DOA equations: 
 

Min
xx
yyr i

i

i
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Taking tangent operation on both sides: 
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Conversion to linear form can be achieved via: 
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In matrix form: 
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As a result, the solution is also of the form: 
 

( ) bAAAx TT 1−
=ˆ  
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Typical mean square error performance of LLS (=LSC) 
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2. Subspace Solution [9]-[12] 
 
Recall TOA model: 
 

Minyyxxndr iiiiii ,,,,)()( 2122 =+−+−=+=  
 

Define a rank-2 matrix: 
 

where 
  
 
  
and 
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Represent D using eigenvalue decomposition: 
 

 
where  

)0,,0,,diag( 21 λλ=Λ , ),diag( 21 λλ=sΛ  
 

],,,[ M21 uuuU = , ],[ 21s uuU =  
 

X  is obtained up to a rotation: 
 

 
 

X  is then determined as: 
 

,   
where 
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In practice, we only have: 
 

 
 

LS estimate of  is: 
 

 
 

Hence a signal subspace algorithm is resulted from: 
 

 
or 
 

  and   

 

is a set of linear equations which can be solved by LLS 
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Alternatively, using: 
 

 
 

we have a noise subspace algorithm: 
 

 

where  
  
 

LS estimate is: 
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Typical mean square error performance of subspace method 
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Solutions with Improved Performance 
 

Design ideas are based on circumventing the drawbacks of 
the LLS and subspace algorithms 
 

Recall the drawbacks in LLS TOA-based method: 
 

 The disturbances { im } are not of same powers but when 
we use LLS, equal weighting is assumed in each equation 

 

Solution: Proper weighting for each equation, i.e., LLS is 
modified to linear weighted least squares (LWLS)  
 
At sufficiently small noise condition, we can rewrite the 
linear equations by including the noise component as: 
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,   ,    

 
we have  which corresponds to linear unbiased 
model and the best unbiased linear estimator (BLUE) is [5] 
 

 
where 
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Typical mean square error performance of BLUE 
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 At sufficiently large noise conditions, the means of { im } 
are not close to 0 and this affects LLS accuracy 

 

Solution: Approximate NLS minimization using convex 
optimization [13]-[16] 
 
Two basic steps are involved: 
 

 Transform the NLS or ML estimator to an equivalent 
constrained optimization problem 

 

 Relax the constrained optimization problem to a 
convex optimization problem such that all constraints 
are convex and linear 

 
The performance of convex optimization approaches ML if 
the constraints are tight 
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Typical mean square error performance of semidefinite relaxation 
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 The introduced variable 22 yxR +=  is a function of x and y 
but this information has not been utilized in LLS 

 

Solution: This information is utilized as a constraint in the 
minimization, i.e., the position estimate is given by 
 

)}({minargˆ xx
x

J=      subject to  22 yxR +=  
 

Combining with WLS, the problem 
 
Minimize )()()( 1 bAxCbAxx p −−= -TJ    subject to  22 yxR +=  

 
which is a constrained WLS (CWLS) problem and can be 
solved by method of Lagrange multipliers [4] 
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Typical mean square error performance of CWLS method 
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One drawback in subspace method: 
 
 Noises in  are not i.i.d. and LS is suboptimal 
 
Solution: Incorporating an optimal weighting matrix in 

 [12] 
 
Two basic steps are involved: 
 

 Reorganize  into the form of bAx ≈  
 

 Incorporate the optimal weighting matrix in bAx ≈  
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Performance Analysis [17] 
 

We start with analyzing the bias and mean square error 
(MSE) in estimation of a scalar  
 

 

 
Suppose its estimate is obtained by minimizing a 
differentiable cost function constructed from , : 
 
   
This implies 
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At small estimation error conditions,  is close to . Applying 
Tayler series expansion yields: 
 
   
 
If  is sufficiently smooth around , then 
 
   
 
Hence 

 
 

 

Similarly,  
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For estimation of a vector  from minimizing , the 
formulas are generalized as follows:  
 

   
and 
   
 

where  is the gradient vector and  is the 
Hessian matrix: 
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As a result, 
 
   
 
Similarly, the covariance matrix is: 
 
   

 

The MSE of  is given by  entry of  
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Consider positioning of a source at  by  
sensors at known coordinates ,   
 
Take TOA model as an illustration: 
 
   
 
where  and  is white 
 
Taking ML or NLS approach as an illustration, the cost 
function is 
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To determine the bias and MSE, the steps include: 
 

   

 
because  
 
Similarly,  
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As a result, 
 

 
 
With tedious calculation, we have 
 

   

 
which is the inverse of the Fisher information matrix 
 
That is, the estimator is optimum 
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