

# Aicyber's System for IALP 2016 Shared Task:Character-enhanced Word Vectors and Boosted Neural Networks

Steven Du , Xi Zhang

#### www.aicyber.com

## Outline



## Task overview

- To predict a given Chinese word's affective states in continuous numerical values (from 1 to 9) on valence-arousal space.
- Supervised regression task:
  - 1653 for training
  - 1149 for testing
- System for supervised learning task
  - Font-end Features
  - Back-end Models (classifiers/regressors)

#### 4

#### Features: Overview

- Given that training and test are all Chinese words, they are unique and no overlapping, thus estimating word representations in a common vector space is required to "link" the training and test set.
- Methods could learn word vectors from collection of text:
  - Vector Space Model
  - Latent Semantic Analysis
  - Latent Dirichlet Allocation
  - Explicit Semantic Analysis
  - Distributed word representation (word2vec)
- Two word embeddings derived from word2vec are used in our system

## Features: CWE

- First set of features derived from distributed word representation: Character-enhanced word embedding [1] (CWE)
- Two type of CWE: CWE+P, CWE+L
- Training parameters: CBOW or Skip-gram , window size of 5, 5 iterations, 5 negative examples, minimum word count of 5



[1]Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun, and Huanbo Luan. 2015b. Joint learning of character and word embeddings. In International Conference on Artificial Intelligence

#### Features: FastText

- The second type of embedding feature: FastText, train word vectors with character n-grams
- Eg: with min character n-grams set to 3
  - hometown -> hom ome met ...own.. home town ... hometown
  - Training parameters: CBOW or Skip-gram, window size of 5, 5 iterations, 5 negative examples, minimum word count of 5, min n-grams=1

#### 7

## Features: training data for word embedding

Following public datasets are used:

1) Chinese Wikipedia Dumps (Time stamp: 2011-02- 05T03:58:02Z), however use of the latest dumps is encouraged.

2) Douban movie reviews

3) Aicyber synthesized 200 sentences . These are intended to cover the out of vocabulary words in the task.

Resulting 445662 Chinese words, mapping of words to remove OOV in the task, 瞭解 > 了解 (understood).

#### Regressors

- Regressors used in the submitted system:
  - Boosted Neural Network, Boosting algorithm (AdaBoost.R2) applied on neural networks
  - Each neural network has only one hidden layer, and its size is 100, with *relu* activation function, *adam* as its training algorithm and a constant learning rate of 0.001.

#### **Evaluation**

- Done locally on valence estimation only
- 3 round of 10 folds cross-validation
- To identify the best feature (and its training parameters) and regression method

| word2vec | < Baseline > | Linear-SVR             |
|----------|--------------|------------------------|
| CWE+P    |              | Boosted Neural Network |
|          |              | Neural Network         |
| CWE+L    |              | GBM                    |
| FastText |              | XGB                    |

#### **Evaluation of Features**

- C: continuous bag-of-words model
- S: Skip-gram
- 100/300:dimensions of feature vectos

| Valenc     | e MAE b | y LSVR | Baseline |       |
|------------|---------|--------|----------|-------|
| Embeddings | C-100   | S-100  | C-300    | S-300 |
| word2vec   | 0.936   | 0.839  | 0.950    | 0.819 |
| CWE+P      | 0.940   | 0.773  | 0.940    | 0.765 |
| CWE+L      | 0.953   | 0.827  | 0.923    | 0.769 |
| FastText   | 1.093   | 0.796  | 1.343    | 0.765 |

#### Table I

A LSVR IS APPLIED TO DIFFERENT TYPE OF EMBEDDING FEATURES, GROUPED BY TRAINING METHODS AND SIZE OF FEATURE VECTOR.

| Valence MA | AE by Bo | osted Ne | eural Net | work  |
|------------|----------|----------|-----------|-------|
| Embeddings | C-100    | S-100    | C-300     | S-300 |
| word2vec   | 0.878    | 0.757    | 0.952     | 0.756 |
| CWE+P      | 0.823    | 0.702    | 0.837     | 0.670 |
| CWE+L      | 0.823    | 0.741    | 0.816     | 0.662 |
| FastText   | 0.876    | 0.695    | 0.947     | 0.668 |

Table II

BOOSTED NEURAL NETWORK REGRESSION METHOD APPLIED TO DIFFERENT

TYPE OF FEATURES.

Summery:

•

- Skip-gram always outperform CBOW
- Skip-gram, 300 DIM are the best training parameters

#### **Evaluation of Regression Methods**

Done on S-300 Embedding

| Embedding | Valence | MAE by | / Differe | nt Regres | ssion Methods |
|-----------|---------|--------|-----------|-----------|---------------|
| S-300     | LSVR    | GBM    | XGB       | NN        | BNN           |
| word2vec  | 0.819   | 0.829  | 0.881     | 0.801     | 0.756         |
| CWE+P     | 0.765   | 0.757  | 0.809     | 0.729     | 0.670         |
| CWE+L     | 0.769   | 0.795  | 0.860     | 0.730     | 0.662         |
| FastText  | 0.765   | 0.791  | 0.847     | 0.711     | 0.668         |

#### Table III

EVALUATION OF DIFFERENT REGRESSION METHODS APPLIED TO S-300 EMBEDDING.

#### **Evaluation of Regression Methods**

Done on S-300 Normalize target value leads to better MAE and PCC



| Embedding    | Valence MAE |          | Valence PCC |          |
|--------------|-------------|----------|-------------|----------|
| S-300-PCA100 | BNN         | BNN_Norm | BNN         | BNN_Norm |
| word2vec     | 0.702       | 0.686    | 0.858       | 0.867    |
| CWE+P        | 0.678       | 0.623    | 0.874       | 0.891    |
| CWE+L        | 0.671       | 0.627    | 0.873       | 0.891    |
| FastText     | 0.662       | 0.639    | 0.879       | 0.889    |
|              |             | Table IV |             |          |

NOTABLE IMPROVEMENT IN MAE AND PCC MADE BY NORMALIZED BNN

APPROACH.

#### **Final Submission**

- Run1 = Average of BNN\_Norm systems trained on CWE+P, and FastText
- Run2 = BNN\_Norm system trained on CWE+P
- Same approaches are used for valence and arousal estimation
- Due to a "bug" in the script CWE+L is not included in the ensemble.

| Run#         | Valence MAE(rank)              | Valence PCC(rank)              |
|--------------|--------------------------------|--------------------------------|
| Run1         | 0.577 (1)                      | 0.848 (8)                      |
| Run2         | 0.581 (3)                      | 0.843 (11)                     |
|              |                                |                                |
|              |                                |                                |
| Run#         | Arousal MAE(rank)              | Arousal PCC(rank)              |
| Run#<br>Run1 | Arousal MAE(rank)<br>1.212 (8) | Arousal PCC(rank)<br>0.671 (1) |

## **Conclusion & Discussion**

- A boosted neural networks build on character-enhanced word vectors, it works "well" on given data.
- Performance of the system should further investigated by repatriation train/test data set.
- Further improvement:
  - Text, speech, vision are just communication channels
    - word2vec
    - Acoustic word vector
    - Visual word vector (Google DeepMind:Lipnet)

## Q & A

https://github.com/StevenLOL/ialp2016\_Shared\_Task

steven@aicyber.com zhangxi@aicyber.com