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Motivation

Is the “M th-Power Nonlinear Transformation”
a good candidate for the estimation of C?
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System Model

Scheme of Feature-based AMC
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System Model

Preprocessing Unit: some details
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Basics on MPT
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Performance and Complexity

Theory and Simulation results
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Performance and Complexity

Comparison between MPT and Cumulant-based classification
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Basic theory
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Thank you!
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