Blind Digital Modulation Classification based on M^{th} -Power Nonlinear Transformation

Vincent Gouldieff^{1,2}, Jacques Palicot¹, Steredenn Daumont²

¹CentraleSupelec/IETR, Rennes, France ²Zodiac Data Systems/Zodiac Aerospace, Caen, France

December 9, 2016

Motivation

Cognitive Radio Context

Cognitive Node

- Senses its environment
- Decision: $C \in \mathcal{C}$

Cognitive Terminal

- **Blind** estimation of C
- No prior knowledge
- Low complexity

Motivation

Cognitive Radio Context

Cognitive Node

- Senses its environment
- $\bullet \ \ \mathsf{Decision:} \ C \in \mathcal{C}$

Cognitive Terminal

- **Blind** estimation of C
- No prior knowledge
- Low complexity

Motivation

Cognitive Radio Context

- Cognitive Node
 - Senses its environment
 - $\bullet \ \ \mathsf{Decision:} \ C \in \mathcal{C}$
- Cognitive Terminal
 - Blind estimation of C
 - No prior knowledge
 - Low complexity

Is the " M^{th} -Power Nonlinear Transformation" a good candidate for the estimation of C?

- System Model & Assumptions
- Basics on M^{th} -Power Transform (MPT)
- Computation of the References
- Performance and Complexity
- Conclusion and Perspectives

- AMC: a short Review
- System Model & Assumptions
- Basics on M^{th} -Power Transform (MPT)
- Computation of the References
- Performance and Complexity
- Conclusion and Perspectives

- AMC: a short Review
- System Model & Assumptions
- Basics on M^{th} -Power Transform (MPT)
- Computation of the References
- Performance and Complexity
- Conclusion and Perspectives

- AMC: a short Review
- System Model & Assumptions
- Basics on M^{th} -Power Transform (MPT)
- Computation of the References
- Performance and Complexity
- Conclusion and Perspectives

- AMC: a short Review
- System Model & Assumptions
- Basics on M^{th} -Power Transform (MPT)
- Computation of the References
- Performance and Complexity
- Conclusion and Perspectives

- AMC: a short Review
- System Model & Assumptions
- Basics on M^{th} -Power Transform (MPT)
- Computation of the References
- Performance and Complexity
- Conclusion and Perspectives

- System Model & Assumptions
- Basics on M^{th} -Power Transform (MPT)
- Computation of the References
- Performance and Complexity
- Conclusion and Perspectives

Automatic Modulation Classification [1]

^[1] O. A. Dobre et al., Survey of AMC Techniques: Classical Approaches and New Trends, IET Communications, 2007

^[1] O. A. Dobre et al., Survey of AMC Techniques: Classical Approaches and New Trends, IET Communications, 2007

^[2] W. Wei and J. M. Mendel, Maximum-likelihood classification for digital amplitude-phase modulations, IEEE Trans. Commun., 2000

^[3] A. Hazza et al., An Overview of Feature-Based Methods for Digital Modulation Classification, in Proc. ICCSPA, 2013

^[1] O. A. Dobre et al., Survey of AMC Techniques: Classical Approaches and New Trends, IET Communications, 2007

^[2] W. Wei and J. M. Mendel, Maximum-likelihood classification for digital amplitude-phase modulations, IEEE Trans. Commun., 2000

^[3] A. Hazza et al., An Overview of Feature-Based Methods for Digital Modulation Classification, in Proc. ICCSPA, 2013

^[1] O. A. Dobre et al., Survey of AMC Techniques: Classical Approaches and New Trends, IET Communications, 2007

^[2] W. Wei and J. M. Mendel, Maximum-likelihood classification for digital amplitude-phase modulations, IEEE Trans. Commun., 2000

^[3] A. Hazza et al., An Overview of Feature-Based Methods for Digital Modulation Classification, in Proc. ICCSPA, 2013

^[4] A. Swami and B. M. Sadler, Hierarchical Digital Modulation Classification using Cumulants, IEEE Trans. Commun., 2000

^[5] O. A. Dobre et al., Cyclostationarity-based Blind Classification of Analog and Digital Modulations, in Proc. MILCOM, 2006

^[1] O. A. Dobre et al., Survey of AMC Techniques: Classical Approaches and New Trends, IET Communications, 2007

^[2] W. Wei and J. M. Mendel, Maximum-likelihood classification for digital amplitude-phase modulations, IEEE Trans. Commun., 2000

^[3] A. Hazza et al., An Overview of Feature-Based Methods for Digital Modulation Classification, in Proc. ICCSPA, 2013

^[4] A. Swami and B. M. Sadler, Hierarchical Digital Modulation Classification using Cumulants, IEEE Trans. Commun., 2000

^[5] O. A. Dobre et al., Cyclostationarity-based Blind Classification of Analog and Digital Modulations, in Proc. MILCOM, 2006

^[6] C. W Lim and M. B. Wakin, Automatic Modulation Recognition for Spectrum Sensing using Nonuniform Compressive Samples, in Proc. ICC, 2012

System Model & Assumptions

- Basics on M^{th} -Power Transform (MPT)
- Computation of the References
- Performance and Complexity
- Conclusion and Perspectives

Single-carrier digital signal in AWGN

$$x(n) = a \cdot e^{i \cdot (2\pi f_r \cdot n + \phi)} \cdot \sum_k s(k) \cdot h(nT_e - kT - \tau) + \omega(n)$$

No synchronization/demodulation

No prior knowledge

Single-carrier digital signal in AWGN

$$x(n) = a \cdot e^{i \cdot (2\pi f_r \cdot n + \phi)} \cdot \sum_k s(k) \cdot h(nT_e - kT - \tau) + \omega(n)$$

No synchronization/demodulation

No prior knowledge

Single-carrier digital signal in AWGN

$$x(n) = a \cdot e^{i \cdot (2\pi f_r \cdot n + \phi)} \cdot \sum_k s(k) \cdot h(nT_e - kT - \tau) + \omega(n)$$

No synchronization/demodulation

No prior knowledge

Single-carrier digital signal in AWGN

$$x(n) = a \cdot e^{i \cdot (2\pi f_r \cdot n + \phi)} \cdot \sum_k s(k) \cdot h(nT_e - kT - \tau) + \omega(n)$$

- No synchronization/demodulation
- No prior knowledge

Single-carrier digital signal in AWGN

$$x(n) = a \cdot e^{i \cdot (2\pi f_r \cdot n + \phi)} \cdot \sum_k s(k) \cdot h(nT_e - kT - \tau) + \omega(n)$$

No synchronization/demodulation

No prior knowledge

Based on 1PT (classical PSD):

- Normalization step: y(n) has unit useful power (a = 1)
- Spectral centering: $f_r pprox 0$
- Output parameters: $\widehat{\eta}=\{\widehat{\sigma}^2_{\omega},\widehat{
 ho},\widehat{eta},...\}$

Based on 1PT (classical PSD):

- Normalization step: y(n) has unit useful power (a = 1)
- Spectral centering: $f_r \approx 0$
- Output parameters: $\widehat{\eta} = \{\widehat{\sigma}^2_{\omega}, \widehat{\rho}, \widehat{\beta}, ...\}$

Based on 1PT (classical PSD):

- Normalization step: y(n) has unit useful power (a = 1)
- Spectral centering: $f_r \approx 0$

• Output parameters: $\widehat{\eta} = \{\widehat{\sigma}^2_{\omega}, \widehat{\rho}, \widehat{\beta}, ...\}$

Based on 1PT (classical PSD):

- Normalization step: y(n) has unit useful power (a = 1)
- Spectral centering: $f_r \approx 0$

• Output parameters:
$$\widehat{\eta} = \{ \widehat{\sigma}^2_{\omega}, \widehat{
ho}, \widehat{eta}, ... \}$$

- AMC: a short Review
- System Model & Assumptions
- Basics on M^{th} -Power Transform (MPT)
- Computation of the References
- Performance and Complexity
- Conclusion and Perspectives

■ *M*PT function:

$$MPT_{y}(f) = \left| \frac{1}{N_{s}} \cdot \sum_{n=0}^{N_{e}-1} y^{M}(n) \cdot e^{-2i\pi nf} \right|^{\frac{2}{M}} = \sqrt[M]{\Gamma_{n}[y^{M}](f)}$$
$$CM_{y}^{n,p,\tau}(f) = \frac{1}{N_{s}} \cdot \sum_{n=0}^{N_{e}-1} \prod_{i=1}^{n} y^{(*)_{i}}(n+\tau_{i}) \cdot e^{-2i\pi nf}$$

Behavior:

→ Minimum Distance Classification

Basics on MPT

■ *M*PT function:

$$MPT_{y}(f) = \left| \frac{1}{N_{s}} \cdot \sum_{n=0}^{N_{e}-1} y^{M}(n) \cdot e^{-2i\pi nf} \right|^{\frac{2}{M}} = \sqrt[M]{\Gamma_{n} [y^{M}](f)}$$
$$CM_{y}^{n,p,\tau}(f) = \frac{1}{N_{s}} \cdot \sum_{n=0}^{N_{e}-1} \prod_{i=1}^{n} y^{(*)_{i}}(n+\tau_{i}) \cdot e^{-2i\pi nf}$$

Behavior:

\rightarrow Minimum Distance Classification

Basics on $M\mathsf{PT}$

■ *M*PT function:

$$MPT_{y}(f) = \left| \frac{1}{N_{s}} \cdot \sum_{n=0}^{N_{e}-1} y^{M}(n) \cdot e^{-2i\pi nf} \right|^{\frac{2}{M}} = \sqrt[M]{\Gamma_{n} [y^{M}](f)}$$
$$CM_{y}^{n,p,\tau}(f) = \frac{1}{N_{s}} \cdot \sum_{n=0}^{N_{e}-1} \prod_{i=1}^{n} y^{(*)_{i}}(n+\tau_{i}) \cdot e^{-2i\pi nf}$$

 \rightarrow Minimum Distance Classification

MPT function:

$$MPT_{y}(f) = \left| \frac{1}{N_{s}} \cdot \sum_{n=0}^{N_{e}-1} y^{M}(n) \cdot e^{-2i\pi n f} \right|^{\frac{2}{M}} = \sqrt[M]{\Gamma_{n}[y^{M}](f)}$$
$$CM_{y}^{n,p,\tau}(f) = \frac{1}{N_{s}} \cdot \sum_{n=0}^{N_{e}-1} \prod_{i=1}^{n} y^{(*)_{i}}(n+\tau_{i}) \cdot e^{-2i\pi n f}$$

→ Minimum Distance Classification

Basics on MPT

■ *M*PT function:

$$MPT_{y}(f) = \left| \frac{1}{N_{s}} \cdot \sum_{n=0}^{N_{e}-1} y^{M}(n) \cdot e^{-2i\pi nf} \right|^{\frac{2}{M}} = \sqrt[M]{\Gamma_{n}[y^{M}](f)}$$
$$CM_{y}^{n,p,\tau}(f) = \frac{1}{N_{s}} \cdot \sum_{n=0}^{N_{e}-1} \prod_{i=1}^{n} y^{(*)_{i}}(n+\tau_{i}) \cdot e^{-2i\pi nf}$$

 \rightarrow Minimum Distance Classification

Basics on MPT

- AMC: a short Review
- System Model & Assumptions
- Basics on M^{th} -Power Transform (MPT)
- Computation of the References
- Performance and Complexity
- Conclusion and Perspectives

$$\sum_{n=-\infty}^{+\infty} g(t+na) = \frac{1}{a} \sum_{m=-\infty}^{+\infty} G\left(\frac{m}{a}\right) \cdot e^{i2\pi f \frac{m}{a}t}$$

• Theory for
$$M = 2$$
:
2F

$$2\mathsf{PT}_{th}^C = \left| \mathbb{E}[s^2] H_2(0) \right|$$

• Theory for M = 4:

$$4\mathsf{PT}_{th}^{C} = \left| \frac{1}{T} \left(\mathbb{E}[s^{4}] H_{4}(0) + 6 \left(\mathbb{E}[s^{2}] \right)^{2} \sum_{k>0} H_{22}^{(k)}(0) \right) \right|^{\frac{1}{2}}$$

Distributions for accurate references (or corrective terms)

^[7] J. E. Mazo, Jitter Comparison of Tones Generated by Squaring and by Fourth-Power Circuits, Bell System Journal, 1978

$$\sum_{n=-\infty}^{+\infty} g(t+na) = \frac{1}{a} \sum_{m=-\infty}^{+\infty} G\left(\frac{m}{a}\right) \cdot e^{i2\pi f \frac{m}{a}t}$$

Theory for
$$M = 2$$
:
 $2\mathsf{PT}_{th}^C = \left| \mathbb{E}[s^2] H_2(0) \right|$

• Theory for M = 4:

$$4\mathsf{PT}_{th}^{C} = \left| \frac{1}{T} \left(\mathbb{E}[s^{4}] H_{4}(0) + 6 \left(\mathbb{E}[s^{2}] \right)^{2} \sum_{k>0} H_{22}^{(k)}(0) \right) \right|^{\frac{1}{2}}$$

Distributions for accurate references (or corrective terms)

^[7] J. E. Mazo, Jitter Comparison of Tones Generated by Squaring and by Fourth-Power Circuits, Bell System Journal, 1978

$$\sum_{n=-\infty}^{+\infty} g(t+na) = \frac{1}{a} \sum_{m=-\infty}^{+\infty} G\left(\frac{m}{a}\right) \cdot e^{i2\pi f \frac{m}{a}t}$$

Theory for M=2: $2\mathsf{PT}^C_{th} = \left|\mathbb{E}[s^2]H_2(0)\right|$

• Theory for M = 4:

$$4\mathsf{PT}_{th}^{C} = \left| \frac{1}{T} \left(\mathbb{E}[s^{4}] H_{4}(0) + 6 \left(\mathbb{E}[s^{2}] \right)^{2} \sum_{k>0} H_{22}^{(k)}(0) \right) \right|^{\frac{1}{2}}$$

Distributions for accurate references (or corrective terms)

References

^[7] J. E. Mazo, Jitter Comparison of Tones Generated by Squaring and by Fourth-Power Circuits, Bell System Journal, 1978

$$\sum_{n=-\infty}^{+\infty} g(t+na) = \frac{1}{a} \sum_{m=-\infty}^{+\infty} G\left(\frac{m}{a}\right) \cdot e^{i2\pi f \frac{m}{a}t}$$

• Theory for M=2: $2\mathsf{PT}^C_{th} = \left|\mathbb{E}[s^2]H_2(0)\right|$

• Theory for M = 4:

$$4\mathsf{PT}_{th}^{C} = \left| \frac{1}{T} \left(\mathbb{E}[s^{4}] H_{4}(0) + 6 \left(\mathbb{E}[s^{2}] \right)^{2} \sum_{k>0} H_{22}^{(k)}(0) \right) \right|^{\frac{1}{2}}$$

Distributions for accurate references (or corrective terms)

^[7] J. E. Mazo, Jitter Comparison of Tones Generated by Squaring and by Fourth-Power Circuits, Bell System Journal, 1978

- AMC: a short Review
- System Model & Assumptions
- Basics on M^{th} -Power Transform (MPT)
- Computation of the References
- Performance and Complexity
- Conclusion and Perspectives

Theory and Simulation results

Distance Matrix

		Constellation								
		BPSK	QPSK	8PSK	8AMPM	R8QAM	C8QAM	16QAM		
Constellation	BPSK	0	1.004	1.419	0.905	0.564	0.988	1.055		
	QPSK		0	0.761	0.219	0.656	0.068	0.159		
	8PSK			0	0.639	0.861	0.829	0.602		
	8AMPM				0	0.468	0.268	0.161		
	R8QAM					0	0.677	0.629		
	C8QAM						0	0.227		
	16QAM							0		

- PSK/QAM/PAM 25% During Control Cont
- 35% Root-Raised-Cosine

1024 symbols
 ρ = 2
 35% Root-Raised-Cosine

Theory and Simulation results

Distance Matrix

		Constellation								
		BPSK	QPSK	8PSK	8AMPM	R8QAM	C8QAM	16QAM		
Constellation	BPSK	0	1.004	1.419	0.905	0.564	0.988	1.055		
	QPSK		0	0.761	0.219	0.656	0.068	0.159		
	8PSK			0	0.639	0.861	0.829	0.602		
	8AMPM				0	0.468	0.268	0.161		
	R8QAM					0	0.677	0.629		
	C8QAM						0	0.227		
	16QAM							0		

Correct Classification Rate (CCR)

■ 35% Root-Raised-Cosine

PSK/QAM/PAM35% Root-Raised-Cosine

Comparison between MPT and Cumulant-based classification

Advantages

- No need for pre-demodulation
- More robustness to noise/uncertainty
- Low complexity (FFTs)

Comparison between MPT and Cumulant-based classification

Advantages

- No need for pre-demodulation
- More robustness to noise/uncertainty
- Low complexity (FFTs)

- AMC: a short Review
- System Model & Assumptions
- Basics on M^{th} -Power Transform (MPT)
- Computation of the References
- Performance and Complexity
- Conclusion and Perspectives

This work:

- *M*PT = great tool for AMC (but not only!)
- Basic theory
- Blind performance

Future work:

- Distributions & theoretical CCR
- Other contexts (channel, interference,...)

- MPT = great tool for AMC (but not only!)
- Basic theory
- Blind performance

Future work:

- Distributions & theoretical CCR
- Other contexts (channel, interference,...)

CentraleSupélec

Thank you!

