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Conventional definitions of scatter matrices

The least squared loss function could be illustrated as:

ε = ‖T1 − T2‖2F (1)

Denote Xi is the dataset of i-th class and ni is the number of
data points in i-th class, then the within-class scatter matrix Sw ,
the between-class scatter matrix Sb and the total-class scatter
matrix St are defined as follows:

Sw =
∑c

i=1
∑

x∈Xi
(x − x̄i)(x − x̄i)

T

Sb =
∑c

i=1 ni(x̄i − x̄)(x̄i − x̄)T

St =
∑n

i=1(xi − x̄)(xi − x̄)T
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Reformulation of discriminant problems in least square forms

Define A(t) = 1
n 11T and A(w)

ij =

{
1

nci
ci = cj

0 otherwise
.

Orthogonal Least Square Discriminant Analysis (OLSDA)

By substituting T1 = W T X and T2 = W T XA(w), we have

‖W T X −W T XA(w)‖2F = Tr(W T X (I − A(w))2X T W )

= Tr(W T SwW )
(2)

which is the objective function of OLSDA.

Similarly, by replacing T1 = W T X and T2 = W T XA(t), we
have
‖W T X −W T XA(t)‖2F = Tr(W T X (I − A(t))2X T W )

= Tr(W T StW )
(3)
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Reformulation of discriminant problems in least square forms

New form of between-class scatter Sb

According to the results in (2) and (3), we have

Sb = St − Sw = X (I − A(t) − I + A(w))X T

= X (A(w) − A(t))X T

= XHY (Y T Y )−1Y T HX T

(4)

Moreover, St = X (I − A(t))X T = XHX T due to Eq. (3). In sum,
we have {

St = XHX T

Sb = XHY (Y T Y )−1Y T HX T
(5)
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Interesting observations of OLSDA and k-means

OLSDA in a brand new form

min
W T W=I

Tr(W T SwW ) = min
W T W=I

Tr(W T (St − Sb)W )

= min
W T W=I

Tr(W T XH(I − Y (Y T Y )−1Y T )HX T W )

= min
W T W=I

‖W T XH(I − Y (Y T Y )−1Y T )‖2F

(6)

The k -means problem: minF ,G∈ind ‖T − FGT‖2F

Supervised k-means
If the associated label is known, i.e., indicative matrix G is fixed
as binary label Y , the k -means problem degenerates to

min
F
‖T − FY T‖2F = ‖T − TY (Y T Y )−1Y T‖2F . (7)
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Equivalence between OLSDA and k-means

By further replacing the data T with the centralized
projected data W T XH ∈ Rk×n in Eq. (7), we notice that the
problem (7) is same as the problem (6).

Theorem 1
OLSDA in (6) is equivalent to k-means problem when
T = W T XH and G = Y.
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Unsupervised OLSDA

Due to theorem 1, we could extend OLSDA to the unsupervised
case.

Unsupervised OLSDA
Accordingly, OLSDA in (6) could be naturally extended to the
unsupervised case as

min
W T W=I,F ,G∈ind

‖W T XH − FGT‖2F . (8)

How to further modify unsupervised OLSDA in (8)
Enhancing the robustness of OLSDA has the following
superiorities.

1 Insensitive to the outliers.
2 Weighted cluster centroids.
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Embedded clustering via robust OLSDA

Robust OLSDA
Based on the unsupervised OLSDA in (8), robust OLSDA
(ROLSDA) could be proposed as

min
W T W=I,F ,G∈ind

‖W T XH − FGT‖2,1. (9)

How to solve the ROLSDA in (9)
Re-weighted counterpart of ROLSDA in (9) is utilized as

min
W T W=I,F ,G∈ind

‖(W T XH − FGT )D
1
2 ‖2F

= min
W T W=I,F ,G∈ind

n∑
i=1

Dii‖W T x (H)
i − Fgi‖22.

(10)
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Associated Karush-Kuhn-Tucker (KKT) conditions

The Lagrangian function is represented as

L (W ,F ) =‖(W T XH − FGT )D
1
2 ‖2F − Tr(Λ(W T W − I)). (11)

Closed form solution

1) ∂L (W ,F )
∂F = 0⇒ F = W T XHDG(GT DG)−1, which is the

weighted form of cluster centroids.
2) ∂L (W ,F )

∂W = 0⇒W T (S(D)
t − S(D)

b )W = Λ, which implies that
W is the matrix of eigenvector corresponding to the first k
smallest eigenvalues of S(D)

t − S(D)
b with{

S(D)
t = XHDHX T

S(D)
b = XHDG(GT DG)−1GT DHX T

.
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Pseudo-code

How to determine the hard label G?
This question could be answered by individually solving

min
gi∈ind

‖W T x (H)
i − Fgi‖22 s.t . 1c

T gi = 1. (12)

The algorithm could be summarized as

Embedded clustering (EC)
Initialize D = I with random G ∈ ind and orthogonal W
1. Update cluster centroids by F ←W T XHDG(GT DG)−1.
2. Update hard label G by by individually solving Eq. (12).
3. Update Dii ← 1

2‖W T x (H)
i −Fgi‖2

.

4. Update S(D)
t ,S(D)

b .
5. Compute W by solving minW T W=I W T (S(D)

t − S(D)
b )W .
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Experiments
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Interpretation
The clustering accuracy comparisons are performed for
PCA+k-means method, PCA+RMKMC method, unsupervised
OLSDA method and proposed EC method.
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Conclusions and Future Works

We discover an interesting theorem about the equivalence
between OLSDA and k -means.
Based on the robust OLSDA, we propose EC method to
deal with unlabeled data sets efficiently.
Some further progress on anchor generation strategy are
needed. Recently, we propose a pretty efficient and
effective method to replace k -means method.
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Thanks!
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