
Imaging Inverse Problems 

OBJECTIVE: to estimate an unknown image 𝑥 from an observation 𝑦.
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Some canonical examples:
• image deconvolution  
• compressive sensing 
• super-resolution 
• tomographic reconstruction
• inpainting

CHALLENGE: not enough information in 𝑦 to accurately estimate  𝑥. 

For example, in many imaging problems 𝑦 = 𝐴𝑥 + 𝑧 where the operator 𝐴 is either:

High-dimensional problems  → 𝑛~106
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not enough equations to solve for 𝑥

NOISE AMPLIFICATION            unreliable estimates of 𝑥

REGULARISATION: We can render the problem well-posed by using prior knowledge about the
unknown signal 𝑥.

How do we choose the regularisation parameter 𝜃?
The regularisation parameter controls how much importance we give to prior knowledge and
to the observations, depending on how ill posed the problem is and on the intensity of the noise.
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POSSIBLE APPROACHES FOR CHOOSING 𝛉:

NON BAYESIAN
• Cross-validation → Exhaustive search method

• Discrepancy Principle

• Stein-based methods →Minimise Stein’s Unbiased Risk Estimator (SURE), a surrogate of the MSE

• SUGAR → More efficient algorithms that uses gradient of SURE

Limitation: mostly designed for denoising problems. Difficult to implement

BAYESIAN
• Hierarchical → Propose prior for 𝜃 and work with hierarchical model

• Marginalisation → Remove 𝜃 from the model 𝑝(𝑥|𝑦) = +ℝ 𝑝 𝑥, 𝜃 𝑦 𝑑𝜃

Limitation: only for homogeneous 𝜑(𝑥) or cases with known 𝐶(𝜃)

• Empirical Bayes → Choose 𝜃 by maximising marginal likelihood 𝑝(𝑦|𝜃)

Difficulty: 𝑝(𝑦|𝜃) becomes intractable in high-dimensional problems

Our strategy: Empirical Bayes

The challenge is that 𝑝(𝑦|𝜃) is intractable as it involves solving two integrals in ℝ𝑛 (to marginalise 𝑥 and to compute 

𝐶 𝜃 ). This makes the computation of 𝜃 𝑀𝐿𝐸 extremely difficult.

OUR CONTRIBUTION
We propose a stochastic optimisation scheme to compute the maximum marginal likelihood estimator of the
regularisation parameter. Novelty: the optimisation is driven by proximal Markov chain Monte Carlo (MCMC) samplers.

We want to find  𝜃 that maximises the marginal likelihood 𝑝(𝑦|𝜃):

൞

𝑝(𝑦|𝜃) = ℝ𝑛 𝑝 𝑦, 𝑥 𝜃 𝑑𝑥

𝜃𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃 ∈ Θ

𝑝(𝑦|𝜃)

We should be able to reliably estimate 𝜃 from 
𝑦 as 𝑦 is very high-dimensional and 𝜃 is a 

scalar parameter

Proposed stochastic optimisation algorithm
If 𝑝(𝑦|𝜃) was tractable, we could use a standard projected gradient algorithm:

STOCHASTIC APPROXIMATION PROXIMAL GRADIENT (SAPG) ALGORITHM
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To tackle the intractability, we propose a stochastic variant of this algorithm based on a noisy 
estimate of 𝑑

𝑑𝜃
𝑙𝑜𝑔(𝑝(𝑦|𝜃𝑡). Using Fisher’s identity we  have:
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If 𝐶 𝜃 is unknown we can use the identity     − 𝑑

𝑑𝜃
𝐿𝑜𝑔 𝐶 𝜃 = 𝐸𝒙|𝜃 𝜑 𝒙

The intractable gradient becomes 
𝑑
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log 𝑝 𝒚 𝜃 =𝐸𝒙|𝒚,𝜃 −𝜑 𝑥 + 𝐸𝒙|𝜃 𝜑 𝒙

Now we can approximate 𝐸𝒙|𝒚,𝜃 −𝜑 𝑥 and 𝐸𝒙|𝜃 𝜑 𝒙 with Monte Carlo estimates.

We construct a Stochastic Approx. Proximal Gradient (SAPG) algorithm driven by two Markov kernels M𝜃 and K𝜃
targeting the posterior 𝑝 𝒙, 𝒚 𝜃 and the prior 𝑝 𝑥 𝜃 respectively.
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How do we generate the samples?

MOREAU-YOSIDA UNADJUSTED LANGEVIN ALGORITHM (MYULA)

𝑥𝑡+1 = 𝑥𝑡 − 𝛾 (𝛻𝑔𝑦 𝑥𝑡 +
𝑥𝑡 − 𝑝𝑟𝑜𝑥𝜑

𝜆𝜃 𝑥𝑡

𝜆
) + 2𝛾 𝑍𝑡+1

𝛻 𝜑𝑀𝑌(𝑥)

We use the MYULA algorithm for the Markov kernels K𝜃 and M𝜃 because they can handle:
▪ High-dimensionality !
▪ Convex problems with a non-smooth 𝜑(𝒙)

▪ The MYULA kernels do not target 𝑝 𝑥 𝑦, 𝜃 and 𝑝 𝑥 𝜃 exactly.
▪ Sources of asymptotic bias:

▪ Discretisation of Langevin diffusion: controlled by 𝛾 and 𝜂.
▪ Smoothing of non differentiable 𝜑(𝑥): controlled by 𝜆.

▪ 𝛾,𝜂 must be < inverse of Lipchitz constant of the gradient driving each diffusion respectively.
▪ More information about how to select each parameter can be found in [2].

WHERE DOES MYULA COME FROM?

𝑑𝑋 𝑡 =
1

2
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LANGEVIN DIFFUSION 

𝑥𝑡+1 = 𝑥𝑡 + 𝛾 𝛻 𝐿𝑜𝑔 𝑝 𝑥𝑡 𝑦, 𝜃 + 2𝛾 𝑍𝑡+1

𝑍𝑡+1~𝑁 0, 𝕀

UNADJUSTED LANGEVIN ALGORITHM (ULA)

If 𝜑(𝑥) is not Lipschitz differentiable ULA is unstable.

The MYULA algorithm uses Moreau-Yosida regularization to replace the non-smooth term 𝜑(𝑥) with its Moreau Envelope 𝜑𝑀(𝑥).

Moreau-Yosida 
regularisation controlled by 𝜆
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Results
We illustrate the proposed methodology with an image deblurring problem using a total-variation prior.

We compare our results with those obtained with:
▪ SUGAR
▪ Marginal maximum-a-posteriori estimation
▪ Optimal or oracle value 𝜃∗

EVOLUTION OF 𝜃 THROUGHOUT ITERATIONS

BOAT IMAGE

QUANTITATIVE COMPARISON

✓ Generally outperforms the other approaches

For each image, noise level, and method, we compute the MAP estimator and we display on this table the average results for the 6 test images. 

EB performs 
remarkably well 
at low SNR values

Longer computing time only justified if marginalisation can’t be used

SUGAR performs poorly when 
the main problem is not noise

Close-up for SNR=20db

METHOD COMPARISON
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too much regularisation
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not enough regularisation
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Future work
▪ Detailed analysis of the convergence properties.

▪ Extending the methodology to problems involving
multiple unknown regularisation parameters.

▪ Reducing computing times by accelerating the Markov
kernels driving the stochastic approximation algorithm:

▪ Via parallel computing
▪ By choosing a faster Markov kernel

▪ Adapt algorithm to support some non-convex problems.

▪ Use the samples from 𝒑 𝒙 𝒚, 𝜽 𝑴𝑳𝑬 to perform

uncertainty quantification.
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The observation 𝒚 is related to 𝒙 by a statistical model as a random variable.

We use a prior density to reduce uncertainty about and deliver accurate estimates.

The Bayesian Framework

𝜑(𝑥) penalises undesired properties and the regularisation 
parameter 𝜃 controls the intensity of the penalisation.  

Example: random vector  𝒙
representing astronomical images.

𝑝 𝑥|𝜃 =
𝑒−𝜃 𝜑 𝑥

𝐶(𝜃)

HYPERPARAMETER

We model the unknown image 𝑥 as a random vector with 

prior distribution 𝑝 𝑥|𝜃 promoting desired properties about 𝑥.
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𝑝 𝑦 𝑥 ∝ 𝑒−𝑔𝑦(𝑥)

The observation 𝑦 is related to 𝑥 by a statistical model:
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Observed and prior information are combined by 
using Bayes' theorem:
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𝑝 𝑥 𝑦, 𝜃 ∝ 𝑒
− 𝑔𝑦 𝑥 + 𝜃 𝜑 𝑥

𝑝 𝑥 𝑦, 𝜃 = 𝑝 𝑦 𝑥 𝑝 𝑥|𝜃 /𝑝(𝑦|𝜃)

ො𝑥𝑀𝐴𝑃 = argmax
𝑥∈ℝ𝑛

𝑝 𝑥 𝑦, 𝜃 = argmin
𝑥∈ℝ𝑛

𝑔𝑦 𝑥 + 𝜃 𝜑(𝑥)

The predominant Bayesian approach in imaging is MAP estimation
which can be computed very efficiently by convex optimisation:

We will focus on convex problems where:
- 𝜑(𝑥) is lower semicontinuous,

proper and possibly non-smooth
- 𝑔𝑦(𝑥) is Lipschitz  differentiable 

with Lipschitz constant L

𝑔𝑦(𝑥) = 
𝑦−𝐴𝑥 2

2

2𝜎2
)𝑦~𝑁(𝐴𝑥, 𝜎2𝐼

NORMALIZING CONSTANT

Conclusions
▪ We presented an empirical Bayesian method to estimate regularisation parameters in convex inverse imaging problems.
▪ We approach an intractable maximum marginal likelihood estimation problem by proposing a stochastic.

optimisation algorithm.
▪ The stochastic approximation is driven by two proximal MCMC kernels which can handle non-smooth regularisers efficiently.
▪ Our algorithm was illustrated with non-blind image deconvolution with TV prior where it:

✓ achieved close-to-optimal performance
✓ outperformed other state of the art approaches in terms of MSE
× had longer computing times.

▪ More details can be found in [3].

EXPERIMENT DETAILS
•Recover 𝒙 from a blurred noisy observation 𝒚 , 𝒚 = 𝐴𝒙 + 𝒛 and 𝒛 )~N(0, 𝜎2𝐼
•𝐴 is a circulant uniform blurring matrix of size 9x9 pixels
•𝜑 𝒙 = 𝑇𝑉 𝒙 → isotropic total-variation pseudo-norm
•We use 6 test images of size 512x512 pixels
•We compute the MAP estimator for each using different values of 𝜃 obtained with different 

methods
•We compare methods by taking average value over 6 images of the  mean squared error 

(MSE) and the computing time (in minutes)
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in minutes

× Increased computing times✓ Achieves close-to-optimal performance

SNR=40dB

Close-up for SNR=20dB
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