

Learning complex-valued latent filters with absolute cosine similarity

Anh H.T. Nguyen, V.G. Reju, Andy W.H. Khong, and Ing Yann Soon School of EEE, Nanyang Technological University, Singapore

nguyenha001@e.ntu.edu.sg, {reju, andykhong, eiysoon}@ntu.edu.sg.

ICASSP'2017, New Orleans, USA

Overview

- Goal: Under-determined convolutive blind source separation
- Objective: Improve the accuracy of mixing matrix estimation
- Existing algorithms: Directional clustering and sparse coding
- Challenges: Complex-valued mixing matrix and non-convexity

Blind separation of convolutive mixtures

- fMRI signals
- Multi-channel recording of real speeches

Fig.: Under-determined convolutive mixtures

Complex-valued mixing model

• Linear and noiseless

$$\mathbf{x}[k] = \mathbf{As}[k] = \sum_{j=1}^{N} \mathbf{a}_j s_j[k]$$

where
$$\mathbf{x}[k] \in \mathbb{C}^{M imes 1}$$
 is the data we have
 $\mathbf{s}[k] \in \mathbb{C}^{N imes 1}$ is the latent sources
and \mathbf{a}_j is jth latent filters/atom/factor/etc.

- M = N: determined mixing process
- M < N: under-determined mixing process

Assumptions

• The sources are sufficiently sparse so that observed data is directional.

$$\mathbf{x}[k] = \mathbf{A} \begin{bmatrix} s_1[k] \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{bmatrix} \approx \mathbf{a}_1 s_1[k]$$
$$\therefore s_1[k] \gg \epsilon_j$$

Ð

Infinite unit vectors having the same direction in complex vector space

$$D^{2}(\mathbf{x}[k], \mathbf{a}_{1}) = 1 - \cos^{2} \theta_{H}(\mathbf{x}[k], \mathbf{a}_{1}) = 1 - \frac{\left\|\mathbf{a}_{1}^{H} \mathbf{x}[k]\right\|^{2}}{\left\|\mathbf{a}_{1}\right\|^{2}_{2} \left\|\mathbf{x}[k]\right\|^{2}_{2}} \approx 0$$

Assumptions (cont.)

• The sources are zero-mean and unit-variance

Fig.: Mixtures of Laplace sourcesFig.: Whitened mixtures
$$\mathbf{x}[k] = \mathbf{As}[k]$$
 $\mathbf{x}_W[k] = \mathbf{Qx}[k] = \mathbf{QAs}[k]$ $\mathbf{C}_s = E\{\mathbf{s}[k]\mathbf{s}^H[k]\} = \mathbf{I}$ $\mathbf{E}\{\mathbf{x}_w[k]\mathbf{x}_w^H[k]\} = \mathbf{QAA}^H\mathbf{Q}^H = \mathbf{I}$

• The mixing matrix for pre-whitened data is semi-unitary/unitary

$$\mathbf{A}\mathbf{A}^{H} = \mathbf{I}$$
 $\implies \sum_{j} \|\mathbf{a}_{j}\|_{2}^{2} \cos^{2} \theta_{H}(\mathbf{x}[k], \mathbf{a}_{j}) = 1$

• Observation: in under-determined case, minimizing the sparsity penalty of cosine similary is suboptimal for directional data.

Issues related to existing methods

• Sparse filtering uses an unsuitable sparsity enforcer for directional data.

$$\min_{\widehat{\mathbf{A}}} E\left\{ \left\| \mathbf{A}^{H} \mathbf{x} \right\|_{1} / \left\| \mathbf{A}^{H} \mathbf{x} \right\|_{2} \right\}$$

$$\rightarrow \min_{\widehat{\mathbf{A}}} E\left\{ \sum_{j=1}^{N} \left\| \widehat{\mathbf{a}}_{j} \right\|_{2} \cos \theta_{H}(\mathbf{x}[k], \widehat{\mathbf{a}}_{j}) \right\}$$

K-hyperlines works best for perfectly directional data

$$\min_{\widehat{\mathbf{A}}} E\left\{ \underset{j=1,\ldots,N}{\min} D^2(\mathbf{x}[k], \mathbf{a}_j) \right\}$$

- "Soft" extensions of K-hyperlines are computationally expensive
- Existing methods do not exploit the semi-unitary property of the mixing matrix.

Proposed algorithm

• Minimize the expected power mean of the phase-invariant cosine distance subject to semi-unitary constraint

$$\min_{\widehat{\mathbf{A}}} J(\widehat{\mathbf{A}}; r), \text{ s.t. } \widehat{\mathbf{A}}\widehat{\mathbf{A}}^H = \mathbf{I}_M.$$

where

$$J(\widehat{\mathbf{A}}; r) = E\left\{ \left[\frac{1}{N} \sum_{j=1}^{N} \left(D^2(\mathbf{x}[k], \widehat{\mathbf{a}}_j) \right)^r \right]^{1/r} \right\}, r \in (-\infty, 1).$$

- Why the power mean?
 - Numerically stable: $\mu(y_1, y_2, \dots, y_N; r) = y_{\min} \left[\frac{1}{N} \sum_{j=1}^N y_j^r / y_{\min}^r \right]^{1/r}$
 - Schur-concave (which acts as a sparsity enforcer)
 - Smooth surrogate of the minimum function (sparsity enforcer for approximately 1-sparse sources)

Proposed algorithm (cont.)

- Semi-unitary constrained non-convex optimization problem
- Reparametrize semi-unitary constrained problems into *unconstrained ones in Euclidean space*

$$\min_{\widehat{\mathbf{A}}} f(\widehat{\mathbf{A}}), \text{ s.t. } \widehat{\mathbf{A}} \widehat{\mathbf{A}}^{H} = \mathbf{I}_{M}$$

$$\rightarrow \min_{\mathbf{B}} f(\widehat{\mathbf{A}}) \text{ s.t. } \widehat{\mathbf{A}} = (\mathbf{B}\mathbf{B}^{H})^{-1/2}\mathbf{B}$$

- Unconstrained problem w.r.t. **B** which can be solved by off-the-shelf tools, e.g., L-BFGS, *NAG*, SGD, momentum, etc.
- \hat{A} is the nearest semi-unitary matrix of **B** (many-to-one mapping)
 - **B** must be full row rank
 - ${\bf \hat{A}}$ is always feasible
 - Same cost for all matrices that are mapped to the same $\mathbf{\hat{A}}$

Proposed algorithm (cont.)

• Backpropagation through nearest semi-unitary projector is practical.

Algorithm 1 Gradient of in-line row-wise decoupling scheme

1: **U**,
$$\Sigma$$
, **V** \leftarrow SVD(**B**)
2: $\boldsymbol{\sigma} \leftarrow \text{diag}(\boldsymbol{\Sigma})$
3: $\widehat{\mathbf{A}} \leftarrow \mathbf{U}\mathbf{V}^{H}$
4: Find f and $\nabla_{\widehat{\mathbf{A}}*}f$ for a batch or minibatch
5: $\mathbf{C} \leftarrow -(\boldsymbol{\Sigma}^{-1}\mathbf{U}^{H}(\nabla_{\widehat{\mathbf{A}}*}f)\mathbf{V}) \oslash (\mathbf{1}\boldsymbol{\sigma}^{T} + \boldsymbol{\sigma}\mathbf{1}^{T})$
6: $\nabla_{\mathbf{B}*}f \leftarrow \mathbf{U}(\mathbf{C}^{H} + \mathbf{C})\boldsymbol{\Sigma}\mathbf{V}^{H} + \mathbf{U}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{H}\nabla_{\widehat{\mathbf{A}}*}f$

- One economy-size SVD per batch or minibatch.
- May be useful for other signal processing applications or machine learning applications as well.

Proposed algorithm (cont.)

Comparison to to optimization on Stiefel manifold

Fig.: Optimization on Stiefel manifold.

Simulation results

- Performance criteria
 - Mixing-error-ratio (MER)

MER =
$$(20/N) \sum_{j} \log \left(\left\| \mathbf{a}_{j}^{\text{coll}} \right\| / \left\| \mathbf{a}_{j}^{\text{orth}} \right\| \right),$$

- Signal-distortion-ratio (SDR) and signal-interference-ratio (SIR):

$$\hat{s}_{ij}(t) = s_{ij}(t) + e_{ij}^{\text{spat}}(t) + e_{ij}^{\text{interf}}(t) + e_{ij}^{\text{artif}}(t)$$
$$SDR_j = 10 \log \frac{\sum_{i,t} s_{ij}^2(t)}{\sum_{i,t} (e_{ij}^{\text{spat}}(t) + e_{ij}^{\text{interf}}(t) + e_{ij}^{\text{artif}}(t))^2}$$

$$SIR_{j} = 10 \log \frac{\sum_{i,t} s_{ij}^{2}(t) + (e_{ij}^{\text{spat}}(t))^{2}}{\sum_{i,t} (e_{ij}^{\text{interf}}(t))^{2}}$$

Simulation results (cont.)

Fig. 1: Average MER in estimation of 2×4 mixing matrix w.r.t. : a) Sparseness. b) Sample size. c) Number of sources

- Synthesized data
 - Better estimation can be achieved.
 - Sparse filtering failed to recover the mixing matrix in under-determined case

Simulation results (cont.)

• Blind separations of under-determined live recording speeches

 Table 1: Output SDR and SIR in dB for 2mic_4src_5cm subset of SiSEC dev1 dataset

RT60	130ms				250ms			
Source	4 males		4 females		4 males		4 females	
Perf. metric	SDR	SIR	SDR	SIR	SDR	SIR	SDR	SIR
PM	4.55	8.27	3.80	6.38	3.67	6.06	3.57	5.36
[22]	4.1	6.38	4.47	6.48	3.55	5.07	3.5	4.85
[9]	3.31	-	3.92	-	2.62	-	3.49	-
Input	-4.81	-4.60	-4.76	-4.68	-4.79	-4.64	-4.83	-4.71

Simulation results (cont.)

- Improvement in SIR is 14% (improvement in SDR is 2%) on SISEC dev1 dataset compared to the state of the art by Cho et. al.
- Much faster (up to 1 minute vs. up to 1 hours).

Male sources 2mic-4src, 130ms, 5cm	Mix.	Est src1	Est src2	Est src3	Est src4
Proposed method					
Cho et. al.					

Conclusions

- Better estimation of complex-valued mixing matrix can be achieved by minimizing the expected power-mean of phase-invariant cosine distance subject to semi-unitary constraint.
- Semi-unitary constrained problems can be efficiently reparametrized into unconstrained problems in Euclidean space.

THANK YOU FOR YOUR ATTENTION

Email: nguyenha001@e.ntu.edu.sg, {reju, andykhong, eiysoon}@ntu.edu.sg.

