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Overview

➢ Goal: Under-determined convolutive blind source separation

➢ Objective: Improve the accuracy of mixing matrix estimation

➢ Existing algorithms: Directional clustering and sparse coding

➢ Challenges: Complex-valued mixing matrix and non-convexity
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Blind separation of convolutive

mixtures

• fMRI signals

• Multi-channel recording of real speeches

Fig.: Under-determined convolutive mixtures 
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Complex-valued mixing model

• Linear and noiseless

where                             is the data we have

is the latent sources

and         is jth latent filters/atom/factor/etc.

• M = N: determined mixing process 

• M < N: under-determined mixing process 
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Assumptions
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• The sources are sufficiently sparse so that observed data is 

directional.

• Infinite unit vectors having the same direction in complex vector 

space



Assumptions (cont.)
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• The sources are zero-mean and unit-variance

• The mixing matrix for pre-whitened data is semi-unitary/unitary

• Observation: in under-determined case, minimizing the sparsity 

penalty of cosine similary is suboptimal for directional data.

Fig.: Mixtures of Laplace sources Fig.: Whitened mixtures



Issues related to existing methods
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• Sparse filtering uses an unsuitable sparsity enforcer for directional 
data.

• K-hyperlines works best for perfectly directional data

• “Soft” extensions of K-hyperlines are computationally expensive

• Existing methods do not exploit the semi-unitary property of the 

mixing matrix. 



Proposed algorithm
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• Minimize the expected power mean of the phase-invariant cosine 
distance subject to semi-unitary constraint

where

• Why the power mean?

– Numerically stable:  

– Schur-concave (which acts as a sparsity enforcer) 

– Smooth surrogate of the minimum function (sparsity enforcer for 
approximately 1-sparse sources)



Proposed algorithm (cont.)

• Semi-unitary constrained non-convex optimization problem

• Reparametrize semi-unitary constrained problems into unconstrained 
ones in Euclidean space

• Unconstrained problem w.r.t. B which can be solved by off-the-shelf 
tools, e.g., L-BFGS, NAG, SGD, momentum, etc.

• Â is the nearest semi-unitary matrix of B (many-to-one mapping)

– B must be full row rank

– Â is always feasible

– Same cost for all matrices that are mapped to the same Â
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Proposed algorithm (cont.)

• Backpropagation through nearest semi-unitary projector is practical.

• One economy-size SVD per batch or minibatch.

• May be useful for other signal processing applications or machine 
learning applications as well.
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Proposed algorithm (cont.)

• Comparison to to optimization on Stiefel manifold
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Fig.: Proposed reparameterization. Fig.: Optimization on Stiefel manifold.



Simulation results

12

• Performance criteria
– Mixing-error-ratio (MER)

– Signal-distortion-ratio (SDR) and signal-interference-ratio (SIR):



Simulation results (cont.)

• Synthesized data

– Better estimation can be achieved.

– Sparse filtering failed to recover the mixing matrix in under-determined case 
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Simulation results (cont.)

• Blind separations of under-determined live recording speeches
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• Improvement in SIR is 14% (improvement in SDR is 2%) on SISEC dev1 
dataset compared to the state of the art by Cho et. al. 

• Much faster (up to 1 minute vs. up to 1 hours).

Simulation results (cont.)
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Conclusions

• Better estimation of complex-valued mixing matrix can be achieved 
by minimizing the expected power-mean of phase-invariant cosine 
distance subject to semi-unitary constraint.

• Semi-unitary constrained problems can be efficiently reparametrized 
into unconstrained problems in Euclidean space.
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