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| don’t have to convince you EV are coming...

https://i.ytimg.com/vi/tj6B489H_zg/maxresdefault.jpg



We assume EV charging will look like this...
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But the future of EV chargmg Ig C|t|es looks like thls
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The Need for
Adaptive

Charging

Transformer Line Currents
Uncontrolled Charging Adaptive Charging




Physical Charging Testbed




What good is a real
testbed?

* Working with real systems allow us to
understand their limitations.

 Without a proper understanding of
these limitations our algorithms may
look great on paper but be practically
useless.




Caltech Substation
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3-phase Transformer
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The Adaptive Charging
Network

54 controllable level-2 EVSEs
50 kW DC Fast Charger.

Oversubscription of transformers, cables
and breakers.

Demonstration environment for demand
response, pricing schemes, and
renewables integration.




charging stations




kW of Capacity




535

MWh of energy delivered




1.8

million mile equivalent




610

tons of Cqu avoided




What can we do

with this system?




Data Collection




Charging Sessions
since April 2018

>

_id: ObjectId("5bc924c8f9af8b0dc677c3c0")
v userInputs: Array
v 0:0bject
userID: 1
milesRequested: 10
WhPerMile: 500
minutesAvailable: 150
modifiedAt: 2018-06-22 13:12:18.000
paymentRequired: true
requestedDeparture: 2018-06-22 15:41:23.000
kWhRequested: 5
sessionID: "2 39 89 439 2018-06-22 20:11:23.086482"
stationID: "2-39-89-439"
spacelD: "CA-501"
siteID: "0002"
clusterID: "0039"
connectionTime: 2018-06-22 13:11:23.000
disconnectTime: 2018-06-22 14:35:39.000
kWhDelivered: 1.659
> pilotSignal: Object
v chargingCurrent: Object
> timestamps: Array
> current: Array
doneChargingTime: 2018-06-22 14:25:51.000
timezone: "America/Los_Angeles"



Charging
Session

Statistics
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Weekday Arrival Distribution
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Simultaneous

Sessions




Online Scheduling




Scheduling Problem

SCH

max

Maximizing profit.

Charging quickly.

Maximizing renewable energy use.
Following demand response signals.

Uk(r) No discharging. Maximum charging rate.
0 < ri(t) < 7i(t) t < d, Relaxation of allowable rate set.

ri(t) = 0 t > d; No charging after departure.

di—1 .

Z ri(0)8 < e Total energy delivered must be less than
= energy requested.

fj(7“1<t)a---a"“N(t)) < Rj(t) teT, Infrastructure constraints.




Unbalanced Three-Phase Constraints
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Unbalanced Three-Phase Constraints

* We assume that we know/can measure the voltage phase angles at the EVSEs.

* Since EVSEs can be modeled as constant current loads with unity power factor, we
thus know the phase angles of their currents.

* Since the magnitude of the current phasor is the only variable, these constraints are
second-order cone constraints and the optimization problem is tractable.
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Unbalanced Three-Phase Constraints

* We assume that we know/can measure the voltage phase angles at the EVSEs.

* Since EVSEs can be modeled as constant current loads with unity power factor, we
thus know the phase angles of their currents.

* Since the magnitude of the current phasor is the only variable, these constraints are
second-order cone constraints and the optimization problem is tractable.
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Phase Aware

Constraints

Profit (§)
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Imperfect Actuation

e Control is done via a pilot signal. N
< 307"
* Pilot signal is only an upper bound on s
charging current. = 90 A
{=Y0)
* Battery management system is free to 2
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Model Predictive Control

* We use model predictive collect active recombute? yes | compute new optimal
control to account for charging sessions pute: schedule using SCH
deviations.

. no

* Schedule is recomputed \

perIOd_Ica”y or when Changes update energy update pilot signalsj
occur in the system. remaining and from most
remaining duration recent schedule J




Simple
Battery
Model

Charging Rate (A)

Actual Charging Behavior

30

20 A

10 - —— Pilot

——— Actual
0 - ; l ' ' ' '
16:30 16:45 17:00 17:15 17:30 17:45 18:00
Time
Two-Stage Battery Model

30
20 A
10 -

O -

0.25 0.50 0.75 1.00
State of Charge



Robustness
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Results




Profit

Maximization

B FCFS B Profit Max
W Fair Share Bl Optimal
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Conclusions

* We should consider the unique challenges of large-
scale charging infrastructure.

* Adaptive scheduling can significantly reduce the
capital and operating costs of large-scale charging
systems.

* Experience with real systems can inform how we
design practical algorithms.

e Real time data from our testbed can be found at
caltech.powerflex.com.




Future Work

 Demonstrating how large-scale EV charging can be
used to flatten the “duck curve”

* Demonstrating the viability of large-scale EV
charging in demand response markets

* Analyzing user behavior to design predictive
scheduling algorithms
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Releasing

Dataset and Simulator

email

to be notified of the release
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