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e Power System State Estimation (SE): nonlinear estimation

o iteratively solved by Gauss-Newton (GN) [Monticelli’00]
e convergence and numerical stability of GN not guaranteed

Semidefinite programming (SDP) and convex relaxations

e near optimality achieved [Zhu et al’14][Mardani et al’16]
e high-order complexity for generic convex solvers

Large-scale SDP arises in a wide variety of applications
e matrix sensing[Jain et al.’13], phase retrieval[Netrapalli et
al.”13], quantum state tomography [Kyrillidis et al.’18]
e simple gradient descent method for a nonconvex
reformulation of SDP [Bhojanapalli et al.’16]

o Goal: accelerating SE using fast nonconvex SDP solver
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Modeling

o Estimate nodal voltages v := [V;, ..., V|7 € CV using:
o P,(Qn): the active (reactive) power injection at bus n;
o P (Qnn): the active (reactive) power flow from bus n to n';
o |V,|: the voltage magnitude at bus n.

e Nonlinear (quadratic) measurement model:
Zg:hg(V)—i—G[, \V%:l,,L (1)
e Weighted Least-Squares (WLS) error objective:
N . L 2
v = arg min 35,0, welze — he(v)] (2)

e GN minimizes (2) through iterative linearization
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Semidefinite Programming (SDP) Formulation

e Form V := vvt € CN*N t0 obtain linear model
:Tr(HgV)—{—Eg, Vil = 1,...,L. (3)

@ Rank constraint relaxed for a convex SDP formulation

V=arg min f(V):= Z we |z — Tl"(HgV)}2 (4a)

VeCNXN
€ =1

s.t. V = 0, and rankVGF=1 (4b)

e recover vector v from the best rank-one approximation of \7,
followed by GN improvements

o V typically of very low rank (<2)

e generic solvers not suitable for real-time implementations
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SDP Using Gradient Descent

@ Recent SDP approaches advocate nonconvex reformulation
using V = UU" with U € CNV*"

U=arg min ¢(U):= f(UU") (5)

o unconstrained (drop the PSD constraint)
o low-rank solution (r < n with r = 1 equivalent to WLS)
e computational gains (convenient gradient descent updates)

e Factored Gradient Descent (FGD) for the nonconvex SDP
Upi1 = U —nVg(Uy)
using the gradient

Vg(U) =2V f(UUM)U = ) 4w, [Tr(U"H,U) - 2]H,U

/=1
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Properties of Function f

e (C1) M-smooth
M
FIV) < FOV) 4 (VFV).V = V) + v - v
e (C2) m-strongly convex
m
FV) 2 f(V) +(VFV)V = V) + IV =V
e For convex f satisfying (C1)+(C2), vanilla GD enjoys linear

convergence; Smaller k = M /m for faster convergence rate

@ Relaxed condition for SDP objectives
(C2’) (m,r)-restricted strongly convex

FOVT) 2 F(V) + (VF(V), VT = Vi) 4+ 2V = Vo2

for any rank-r matrices (V", V")
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SDP-SE Analysis

e Compact form of matrix sensing objective using the linear

map H
FV) =z = H(V)Iy (6)
e (C1)+(C2’) lead to
m V7[5 < 21Vl < M- [ VTIE. (7)

e Under the power flow model, we obtain upper/ lower bounds
for every V1 € V := {V|rank(V) = 1,V2 < V,,, < V?}

-V = Y 2wplVal' + Z whPY+ 3 2wy

TLGNV neN, P TLGNQ
+ Z 2ub P2, + Z 2w!
(n,n')EEP (n,n')e€q
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Upper/Lower Bounds

o Let V = max,|V,| and V = min, |V,,|.
o VS|Vt <V

L Pgn/ + ng/ = ’Snn"Q = ‘Vn(ynn’(vn - Vn’)),H’z < 4‘ynn"2‘74;
° Pr% + Q2 |S |2 |V (ZV yTLVVvV)}'i’2 S (Zy ‘:I/TLI/‘)ZV
e A good set of weight coefficients:
wy =1/2
wfm’ = wgm’ = 1/(8‘ynn/|2)
wz - ng - 1/{2(21/ ‘yTLVDQ}
e For Ng (Njy|) power (voltage) meters
IVIE" ™ IV

T~z Ns + Nyy)
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FGD Convergence

o (asl) Sufficiently good initialization point
Dist(U,, U) < p—“ar(U)

° (asZ) Optimal solution approximately rank-r
IV = V"lr < £50,(V")

e Main results: [Bhojanapalli et al.’16]
Under (asl)-(as2), with n = 1/(16(M||Voll2 + |V f(Vo)ll2)),

linear convergence achieved by FGD, as
Dist(UkH,U) < « - Dist(Uy, ) +05- HV V’”HF

for 0 < a < 1.
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Accelerated Gradient Descent

e Nesterov’s acceleration for better convergence rate

k—2
Ut = U, + <k——{—1> (Uk; — U/‘ffl) (9&)
Uy =U" —nVg(U") (9b)

e Require the data from the past two iterations

e Same computation complexity per iteration as FGD

o Under resctricted isometry property (RIP) of f, AGD shown
to converge linearly for nonconvex SDP formulation
[Kyrillidis et al.’18]
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AGD and FGD Comparison

100 Monte-Carlo tests

e Iterative error with respect to the actual V, averaged over
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Table 1: Average Run Time of FGD and AGD
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1000
Number of iterations

118-bus | 300-bus | 2000-bus
FGD | 0.1584s | 1.903s 72.01s
AGD | 0.0372s | 0.5853s 42.39s
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SE Error Performance

e RMSE error criterion: |[v — v||2/||v]]2

Table 2: SE Error and GN Convergence Rate

SE Error 118-bus 300-bus 2000-bus
GN 0.0962 (98%) | 0.2604 (79%) | 0.4784 (21%)
SDP-GN[0.0100 (100%)|0.0717 (100%)| N/A (N/A)
FGD-GN|0.0100 (100%)[0.0717 (100%)|0.0078 (100%)
AGD-GN|0.0100 (100%)|0.0717 (100%)|0.0078 (100%)

Table 3: Average Run Time of SDP, FGD, and AGD

Time | 118-bus | 300-bus | 2000-bus
SDP | 4.887s 50.82s N/A
FGD | 0.1584s | 1.903s 72.01s
FGD | 0.0372s | 0.5853s | 42.39s
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Concluding Remarks

e Fast SDP-SE solver using recent approaches of local search
for nonconvex problems
e verify the FGD convergence conditions from power flow
analysis
e improve the numerical convergence using AGD
e Ongoing work
e rigorous analysis of the AGD updates
e constrained SDP extensions for optimal power flow problem
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