

On Optimal Sensing and Capacity Tradeoff in Cognitive Radio Systems with Directional Antennas

Hassan Yazdani and Azadeh Vosoughi

Department of Electrical Engineering and Computer Science University of Central Florida

Outline

- ✓ System Model
- Spectrum Sensing
- Data Communication Channel
- Sensing-Capacity Trade-off
- Constrained Optimization Problem
- Solution
- Simulation Results

System Model

Geometry

- Secondary users (SUs) and primary users (PUs) coexist.
- SUs are equipped with steerable directional antennas.
- The directional antennas can identify and enable transmission and reception across spatial domain and enhance spectrum utilization, compared with omni-directional antennas.
- SU_{tx} first senses the spectrum, and, then transmits data to SU_{rx} with power *P* if spectrum is sensed idle.
- SU_{tx} knows the geometry of CR network.
- SU_{tx} knows only the CSI of SU_{tx} -SU_{rx} link, and the statistics of the other links.
- θ , θ_{pr} and θ_{pt} are the orientations of SU_{rx}, PU_{rx} and PU_{tx} w.r.t. SU_{tx}.
- ϕ_t and ϕ_r are the boresight of SU_{tx} and SU_{rx} antennas (to be optimized).

System Model

Frame Structure of SUs

- SU_{tx} employs a frame with duration *T* seconds.
- SU_{tx} senses the spectrum for a duration of τ seconds, to decide whether it is busy or idle.
- The remaining frame of duration $T \tau$ seconds is used for data transmission if the channel is sensed idle.

Gaussian Pattern

$$A(\phi) = A_1 + A_0 \exp\left(-B\left(\frac{\phi}{\phi_{3dB}}\right)^2\right)$$

 ϕ_{3dB} is the half-power beam-width A_1 and A_0 are two constant parameters

Spectrum Sensing

- We formulate the spectrum sensing at SU_{tx} as a binary hypothesis testing problem.
- The Binary Hypothesis Testing Problem

$$\begin{cases} \mathcal{H}_0: \ r[k] = w[k] & P(\mathcal{H}_0) = \pi_0 \\ \mathcal{H}_1: \ r[k] = \sqrt{g_{s_t p_t} A(\phi_t - \theta_{p_t}) L_{s_t p_t}} \ p[k] + w[k] & P(\mathcal{H}_1) = \pi_1 \end{cases}$$

•
$$E(p^2) = P_p$$

• Considering energy detection, the decision rule at SU_{tx} is $Z = \frac{1}{N_c} \sum_{k=1}^{N_s} |r[k]|^2 \gtrless \widehat{\mathcal{H}}_0^1 \xi$

$$P_f(\phi,\tau) = \Pr\{\widehat{\mathcal{H}}_1 | \mathcal{H}_0\} = Q\left(\left(\frac{\xi}{\sigma_n^2} - 1\right)\sqrt{\tau f_s}\right)$$
$$P_d(\phi,\tau) = \Pr\{\widehat{\mathcal{H}}_1 | \mathcal{H}_1\} = Q\left(\left(\frac{\xi}{\sigma_n^2} - \gamma - 1\right)\sqrt{\frac{\tau f_s}{2\gamma + 1}}\right)$$

• $\hat{\mathcal{H}}_1$ and $\hat{\mathcal{H}}_0$ with probabilities $\hat{\pi}_1$ and $\hat{\pi}_0$ denote that the result of spectrum sensing is busy and idle.

Data Communication Channel

• When the spectrum is sensed idle, the SU_{tx} uses power *P* to transmit signal to SU_{rx} .

$$y[m] = \sqrt{g_{ss}L_{ss}G(\theta,\phi_t,\phi_r)} \, s[m] + n[m]$$

$$G(\theta, \phi_t, \phi_r) = A(\phi_t - \theta)A(\phi_r - \pi - \theta) \qquad s \sim \mathcal{N}(0, P) \qquad n \sim \mathcal{N}(0, \sigma_n^2)$$

Ergodic Capacity

- Spectrum sensing is imperfect and the ergodic capacity would depend on the true status of the PU and the spectrum sensing result.
- The false alarm and detection probabilities should be incorporated in the design and performance analysis.

$$C = D E\{\alpha_0 c_{0,0} + \beta_0 c_{1,0}\}$$

 $\alpha_{0} = \Pr\{\mathcal{H}_{0}, \widehat{\mathcal{H}}_{0}\} \qquad \beta_{0} = \Pr\{\mathcal{H}_{1}, \widehat{\mathcal{H}}_{0}\} \qquad D = \frac{T-\tau}{T}$ $c_{0,0} = \log_{2}\left(1 + \frac{g_{ss}L_{ss}GP}{\sigma_{n}^{2}}\right)$ $c_{1,0} = \log_{2}\left(1 + \frac{g_{ss}L_{ss}GP}{\sigma_{n}^{2} + P_{p}g_{ps}L_{ps}A(\phi_{r} - \theta'_{p_{t}})}\right)$

Sensing-Capacity Trade-off

- If we increase the sensing time τ, the spectrum sensing becomes more accurate. On the other hand, data transmission duration decreases. Therefore, a trade-off exists between the sensing time and the transmission capacity of our CR network.
- To increase probability of detection $P_d(\phi, \tau)$, SU_{tx} 's antenna should be pointed to PU_{tx} 's direction to receive the maximum power. On the other hand, the SU_{tx} 's antenna should be pointed to SU_{rx} 's direction to maximize the transmission capacity. Thus, there is a sensing-capacity trade-off in terms of the SU_{tx} 's antenna orientation.

> There are trade-offs between sensing and capacity in terms of sensing duration τ and SU_{tx}'s antenna orientation.

Constrained Optimization Problem

Outage Interference Probability Constraint

• We define the interference outage probability as the probability that the interference exceeds a maximum threshold I_{pk} be smaller than a maximum value ε .

$$Pr\{D\beta_0 g_{sp} L_{sp} P A(\phi_t - \theta_{p_r}) > I_{pk} \mid g_{ss}\} \le \varepsilon$$
(1)

- Peak Transmit Power Constraint $D \hat{\pi}_0 P \le P_{pk}$ (2)
- $\textbf{> Constraints on Angles} \qquad |\phi_t \theta| \le \phi_{3dB} \qquad (3a) \\ |\phi_r \pi \theta| \le \phi_{3dB} \qquad (3b)$

Optimization Problem

$$\max_{P,\tau,\phi_t,\phi_r} C = D E \{ \alpha_0 c_{0,0} + \beta_0 c_{1,0} \}$$

s.t.: (1), (2) and (3) are satisfied.

• Taking the first derivative of *C* with respect to τ , we get

$$\lim_{\tau \to 0} \frac{\partial c}{\partial \tau} \to +\infty \qquad \qquad \lim_{\tau \to T} \frac{\partial c}{\partial \tau} < 0$$

$$\xi \ge \sigma_n^2 (1+m\gamma) \qquad \qquad m = \frac{1}{\pi_1 + \pi_0 \sqrt{2\gamma + 1}} < 1$$

- Hence, *C* has a maximum point with respect to τ within the interval (0, *T*).
- The capacity is concave with respect to *P* and φ_r . However, in general, it is not concave with respect to φ_t and τ .

$$P^{\text{opt}} = \min\left\{\frac{P_{\text{pk}}}{D\hat{\pi}_0}, \frac{-I_{\text{pk}}}{D\bar{b}_0 \ln(\varepsilon)}\right\}$$
(14)
$$\bar{b}_0 = \beta_0 \gamma_{sp} L_{sp} A(\phi_t - \theta_{p_r})$$

Algorithm 1: Optimization Algorithm

$$\begin{split} \phi_t^{(0)} &= \phi_{\text{init}} \\ \tau^{(0)} &= \tau_{\text{init}} \in (0, T) \\ \text{calculate } P \text{ using (14).} \\ \text{solve } \partial C / \partial \phi_r &= 0 \text{ and obtain } \phi_r. \\ [\phi_t^{\text{opt}}, \tau^{\text{opt}}] &= \arg\max\left\{C\right\} \text{ using bisection search} \\ P^{\text{opt}} &= [P]_{\phi_t = \phi_t^{\text{opt}}, \ \tau = \tau^{\text{opt}}} \\ \phi_r^{\text{opt}} &= [\phi_r]_{\phi_t = \phi_t^{\text{opt}}, \ \tau = \tau^{\text{opt}}} \end{split}$$

 $\pi_1 = 0.3, T = 10 \text{ ms}, f_s = 20 \text{ KHz},$

 $I_{pk} = 2 \text{ dB}, \qquad P_{pk} = 10 \text{ dB}, \qquad \varphi_{3dB} = 30^{\circ}, \qquad \varepsilon = 0.05$

 $\phi_{p_r}=90^o$

 $\varphi_{3dB}=30^\circ$

capacity ratio $\Gamma_{D2O} = C_{opt}^{Dir} / C_{opt}^{Omn}$

 Γ_{D2O} versus θ for $P_{\text{pk}} = 6, 8$ dB.

- The directional antennas can identify and enable transmission and reception across spatial domain and enhance spectrum utilization, compared with omni-directional antennas.
- There are trade-offs between sensing and capacity in terms of sensing duration τ and SU_{tx}'s antenna orientation.
- An antenna with narrower half-power beam-width always yields higher capacity since it can cancel more interference from PU_{tx}.
- The capacity ratio Γ_{D2O} is higher for large P_{pk} .
- We showed the effectiveness of using directional antennas and as well as optimizing their orientation on the capacity of CR network.

Thank you for your attention