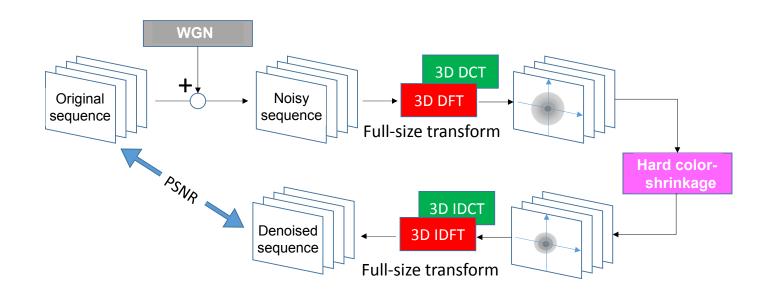
TA-PB.3 3-D Mean-Separation-Type Short-Time DFT with Its Application to Moving-Image Denoising

Takashi Komatsu, Ken Tyon & Takahiro Saito, Kanagawa Univ., Japan



1

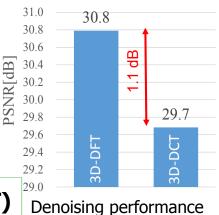
Abstract

- For a still image, 2-D DFT and 2-D DCT have similar properties.
- For a moving-image sequence, 3-D DFT gets an advantage of representing the sequence more compactly over the **3-D DCT**.
- Mathematical analysis on a simple model of a moving-image sequence shows that the even symmetry in 3-D DCT causes deterioration of representation compactness and 3-D DFT can achieve more compact representation than 3-D DCT. \rightarrow See Proc. paper.
- To improve the suitability of 3-D short-time DFT (3-D ST-DFT) [1], [2] to moving-image processing, in this paper we
 - introduce a technique of local-mean-separation as a preprocess of the 3-D ST-DFT, thus to construct 3-D mean-separation-type ST-DFT (3-D MS²T-DFT), and
 - apply 3-D MS²T-DFT to color moving-image denoising, and
 - demonstrate its advantage over the existing methods through experimental simulations.
- As for denoising performance, 3-D MS²T-DFT is superior to 3-D redundant DCT (3-D **RDCT**) by 1.0 ~ 1.9 dB, and generally outperforms **CVBM3D** [5].

3-D DFT vs. 3-D DCT: Application to Video Denoising

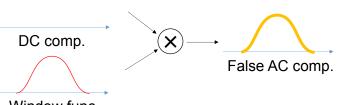
Additive WGN

3D DFT/3D DCT


Shrinkage

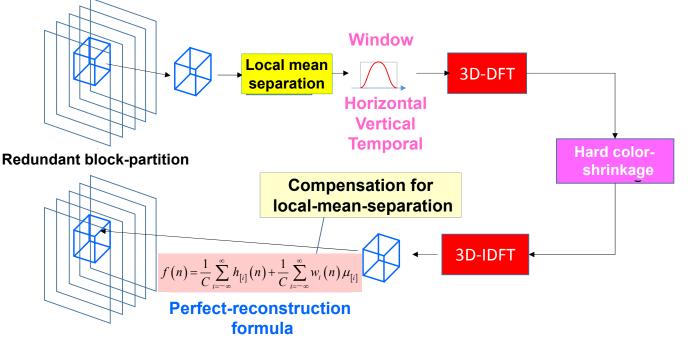
Shrinkage of DFT coefficients

Approx. 25.3 dB Full frame-size


Hard color-shrinkage

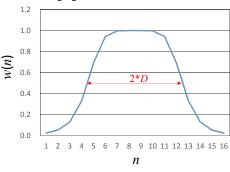
Phase-preserving-type shrinkage; Magnitude alone is processed.

3 Mean-Separation-Type 3-D ST-DFT (MS²-DFT)

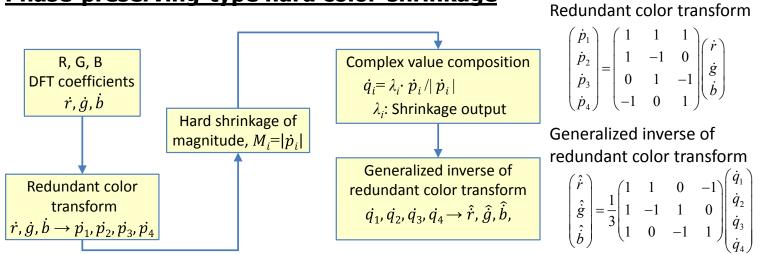

- **Subblock-based DFT** produces distortions, i.e. blocking artifacts.
- ST-DFT is a practical technique to suppress the blocking artifacts, and in the field of acoustic signal processing, ST-DFT has been used as a basic tool [1] ~ [2].
- In ST-DFT, an input signal is multiplied by a window function, each windowed subblock is transformed with DFT, and then DFT coefficients are processed.
- In 1980, J. S. Lim proposed a still-image denoising method with 2-D ST-DFT [2], but there has been no further extension to image and/or video processing.
- Oscillatory signals such as acoustic signals do not have any DC components, whereas image signals have significant local DC components carrying important information.
- If ST-DFT is directly applied to image signals, <u>the multiplication of DC components by the</u> <u>window causes false AC components</u>, whose bad effect spreads over a wide range in the frequency domain, and hampers denoising.
- To alleviate this bad effect, <u>3-D MS²T-DFT</u> <u>subtracts a local mean within each subblock</u> <u>from input signals</u> in advance of the application of the ST-DFT.

To restore an image from processed ST-DFT coefficients, <u>3-D MS²T-DFT compensates for</u> the local-mean separation.

Flow diagram of 3-D MS²T-DFT denoising



4 Experimental Simulations


- Evaluations of denoising performance through experimental simulations of noisy color moving-image sequences
- Test sequences: ITE Standard Color Moving-Image Sequences: "Woman with Bird Cage", "Whale Show", "Walk through the Square" & "Harbor Scene"
- Noise: Additive White Gaussian Noise
- Window function: Butterworth-type window function
- Shrinkage of DFT coefficients: Phase-preserving-type hard color shrinkage [3] with the redundant color transform [4]
- Comparison with the state-of the-art denoising method, "CVBM3D [5] "

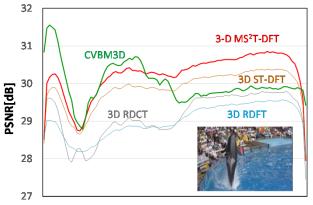
Butterworth-type Window Function

$$w(x) = \begin{cases} \frac{1}{1 + (|x - 2D|/D)^{2n}}, & 0 \le x < 4D, \\ 0, & \text{otherwise.} \end{cases}$$

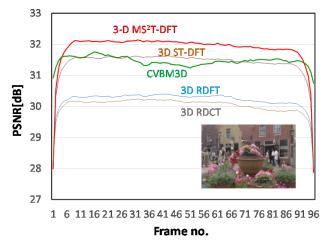
Phase-preserving-type hard color-shrinkage

Simulation #1

Test sequence	Walk through the square			
Additive noise	22.2 dB			
Block size	16 × 16 × 16			
Method #1	3-D redundant DFT			
	without mean separation			
Method #2	3-D ST-DFT without mean			
	separation			
Method #3	3-D MS ² T-DFT			


Denoising methods

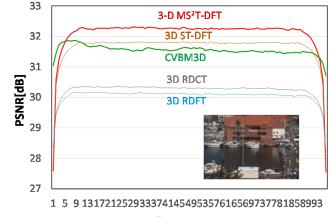
Simulation #2 Test sequences for denoising simulations


Sequence No.	Sequence title	Object motion	Camera work
1	Woman with Bird Cage	Moving woman with a bird cage	Slow panning
2	Whale Show	Jumping whale	Panning
3	Walk through the Square	Waking girl	Horizontal dolly
4	Harbor Scene	Walking crowds	Slow panning

36 35 3-D MS²T-DF **CVBM3D** 34 3D ST-DFT 3D RDF **3D RDCT** PSNR[dB] 33 32 31 30 29 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Frame no.

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 Frame no.


Noisy test sequences, 19.3 [dB]

Specification of denoising methods

Denoising methods	Specification			
3-D M ^s 2T-DFT	Our proposed denoising method			
3-D ST-DFT	$16 \times 16 \times 16$ ST-DFT, Butterworth-type window, No mean-separation			
3-D RDFT	8×8×8 redundant DFT			
3-D RDCT	8×8×8 redundant DCT			
CVBM3D	8×8×8 DCT			

PSNR's [dB] of denoised sequences

	Sequence number				
Denoising	1	2	3	4	
methods	all frames	all frames	all frames	all frames	
	66 frames	66 frames	66 frames	66 frames	
3-D MS ² T-DFT	34.018	30.189	31.786	31.979	
	34.279	30.343	32.023	32.261	
3-D ST-DFT	33.328	29.835	31.335	31.562	
	33.496	29.955	31.530	31.792	
3-D RDFT	33.125	28.992	30.000	30.027	
	33.190	29.017	30.117	30.114	
3-D RDCT	32.723	29.108	30.184	30.204	
	32.785	29.137	30.300	30.310	
CVBM3D	34.279	29.968	31.451	31.548	
	34.208	29.953	31.451	31.556	

Frame no.

References

- 1) T. F. Quantieri, "Chap. 7: Short-time Fourier transform analysis and synthesis," in Discrete-Time Speech Signal Processing, Prentice Hall Inc., Englewood Cliffs, NJ, USA, 2002.
- 2) J. S. Lim, "Image restoration by short space spectral subtraction", IEEE Trans. Acoust., Speech, & Signal Process., vol.ASSP-28, no.2, pp.191-197, April 1980.
- 3) P. Kovesi, "Phase preserving denoising of images," Proc. Fifth International/National Biennial Conference on Digital Image Computing, Techniques & Applications (DICTA 99), pp.212-217, Perth, Australia, Dec. 1999.
- 4) T. Saito, Y. Ueda, and T. Komatsu, "Color shrinkage for sparse coding of color images," Proc. 18th European Signal Process. Conf. (EUSIPCO 2010), pp.1023-1027, Aug. 2010.
- 5) K. Dabov, A. Foi, and K. Egiazarian, "Video denoising by sparse 3D transform-domain collaborative filtering," Proc. 15th European Signal Process. Conf. (EUSIPCO 2007), pp.145-149, Poznań, Poland, Sept. 2007.