Gaussian Texture Inpainting

Results 0000000

MICROTEXTURE INPAINTING THROUGH GAUSSIAN CONDITIONAL SIMULATION

Arthur Leclaire¹ Joint work with Bruno Galerne² and Lionel Moisan²

¹ENS Cachan CMLA, CNRS UMR 8536 ² Université Paris Descartes MAP5, CNRS UMR 8145

ICASSP16 Thursday, March 24th, 2016

This work has been partially funded by the French Research Agency under grant ANR-14-CE27-001 (MIRIAM).

Motivation

Inpainting consists in filling missing regions of an image.

This problem has been addressed with

- variational/PDE-based methods
 [Masnou & Morel, 1998], [Bertalmio et al.,2000],
 [Chan & Shen, 2001], [Tschumperlé et al., 2006] ...
- stochastic/exemplar-based methods [Igehy Pereira, 1997], [Efros Leung, 1999], [Criminisi et al., 2004], [Wexler et al., 2007] ...
- hybrid methods [Bertalmio et al., 2003], [Elad et al., 2005], [Cao et al., 2011]...
- variational exemplar-based methods [Aujol et al., 2010], [Arias et al., 2011]

Results 0000000

Results 0000000

Textural Inpainting by Conditional Simulation

• In the case of random texture models, inpainting can be formulated as **conditional simulation**.

Notation:

- $\Omega \subset \mathbb{Z}^2$ is a discrete rectangle.
- *F* is a random texture model on Ω .

Results 0000000

Textural Inpainting by Conditional Simulation

• In the case of random texture models, inpainting can be formulated as **conditional simulation**.

Notation:

- $\Omega \subset \mathbb{Z}^2$ is a discrete rectangle.
- F is a random texture model on Ω .

 $M \subset \Omega$ is a mask.

The values u(x) are known for $x \in \Omega \setminus M$.

Results 0000000

Textural Inpainting by Conditional Simulation

• In the case of random texture models, inpainting can be formulated as **conditional simulation**.

Notation:

 $\Omega \subset \mathbb{Z}^2$ is a discrete rectangle.

F is a random texture model on Ω .

 $M \subset \Omega$ is a mask.

The values u(x) are known for $x \in \Omega \setminus M$.

 $\mathcal{C} \subset \Omega \setminus M$ is a set of conditioning points.

Results 0000000

Textural Inpainting by Conditional Simulation

• In the case of random texture models, inpainting can be formulated as **conditional simulation**.

Notation:

 $\Omega \subset \mathbb{Z}^2$ is a discrete rectangle.

F is a random texture model on Ω .

 $M \subset \Omega$ is a mask.

The values u(x) are known for $x \in \Omega \setminus M$.

 $\mathcal{C} \subset \Omega \setminus M$ is a set of conditioning points.

• Main idea: Sample the conditional distribution of F knowing $F_{|C} = u_{|C}$.

If *F* is a Gaussian model, this can be done perfectly.

Results 0000000

Outline

Microtexture Synthesis by Example

Gaussian Texture Inpainting

Results

By-example Synthesis of Microtextures

Goal: Synthesize an exemplar microtexture $u : \Omega \to \mathbb{R}^d$.

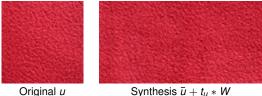
 \rightarrow We estimate the mean value by $\bar{u} = \frac{1}{|\Omega|} \sum_{x \in \Omega} u(x)$.

 \rightarrow We consider the "normalized spot" $t_u(x) = \frac{1}{\sqrt{|\Omega|}} (u(x) - \overline{u}) \mathbf{1}_{x \in \Omega}, \ (x \in \mathbb{Z}^2).$

 \rightarrow We sample the Gaussian model

$$ar{u}+t_u*W(x)=ar{u}+\sum_{y\in\mathbb{Z}^2}W(y)t_u(x-y),\quad (x\in\Omega),$$

where W is a normalized Gaussian white noise on \mathbb{Z}^2 ($W(x) \sim \mathcal{N}(0, 1)$).



Synthesis $\bar{u} + t_u * W$

[Van Wijk, 1991], [Galerne et al., 2011]

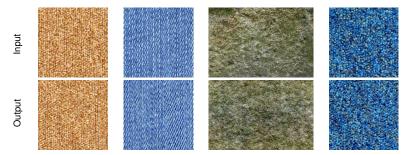
Results 0000000

A Precise Model for Microtextures

• $F = t_u * W$ has zero mean and covariance function

$$\mathbb{E}(F(x)F(y)) = t_u * \tilde{t}_u^T(x-y) = \frac{1}{|\Omega|} \sum_z u(z)u(y-x+z)^T,$$

where $\tilde{t}_u(x) = t_u(-x)$.



- The convolutions can be computed efficiently with the FFT.
- Technical detail: In order to avoid potential directional artifacts, the border discontinuity of t_u can be attenuated by a smooth window [Galerne et al., 2011].

Gaussian Texture Inpainting

Results 0000000

Outline

Microtexture Synthesis by Example

Gaussian Texture Inpainting

Results

Gaussian conditional simulation

• Let $(F(x))_{x \in \Omega}$ be a Gaussian vector with mean zero and covariance

 $\Gamma(x,y) = \operatorname{Cov}(F(x),F(y)) = \mathbb{E}(F(x)F(y)), \quad x,y \in \Omega.$

• There exists $(\lambda_c(x))_{c \in C}$ such that

$$\mathbb{E}(F(x) \mid F(c), c \in C) = \sum \lambda_c(x)F(c).$$

• The simple kriging estimation is defined by $F^*(x) = \sum_{c \in C} \lambda_c(x)F(c)$.

Theorem: F^* and $F - F^*$ are independent. [Lantuéjoul, 2002]

Consequence: A conditional sample of *F* given $F_{|C} = \varphi$ can be obtained as

$$F \mid F_{\mid c} = \varphi \quad \sim \underbrace{\varphi^*}_{\text{Kriging component}} + \underbrace{F - F^*}_{\text{Innovation component}}.$$

• The kriging coefficients $\Lambda = (\lambda_c(x))_{\substack{x \in \Omega \\ c \in C}}$ satisfy $\Gamma_{\mid \Omega \times C} = \Lambda \Gamma_{\mid C \times C}.$

• When $\Gamma_{|\mathcal{C}\times\mathcal{C}}$ is non-singular, $\Lambda = \Gamma_{|\Omega\times\mathcal{C}}\Gamma_{|\mathcal{C}\times\mathcal{C}}^{-1}$.

Application with a Gaussian texture model

We observe a texture $u : \Omega \to \mathbb{R}$ outside a mask $M \subset \Omega$.

We take C as the outside border of M.

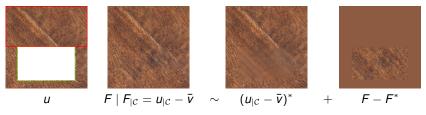
 \rightarrow Estimate a Gaussian texture model on a subdomain $\omega \subset \Omega \setminus M$ by

$$v = u_{|\omega}$$
, $\bar{v} = \frac{1}{|\omega|} \sum_{x \in \omega} v(x)$, $t_v = \frac{1}{\sqrt{|\omega|}} (v(x) - \bar{v}) \mathbf{1}_{x \in \omega}$

The Gaussian model is $\bar{v} + F$ where $F = t_v * W$; $\Gamma(x, y) = t_v * \tilde{t}_v(x - y)$

 \rightarrow Draw a conditional sample of $\bar{v} + F$ given $F_{|C} = u_{|C} - \bar{v}$, i.e.

$$\bar{v} + (u - \bar{v})^* + F - F^*$$
 where $\varphi^* = \Lambda(\varphi_{|\mathcal{C}}) = \Gamma_{|\Omega \times \mathcal{C}} \Gamma_{|\mathcal{C} \times \mathcal{C}}^{-1} \varphi_{|\mathcal{C}}$



Results 0000000

Algorithm

Trick: With our Gaussian model, $\Gamma_{|\Omega \times C} \psi$ can be computed efficiently by convolving the zero-padding extension of ψ by $t_v * \tilde{t}_v$.

Color extension: Three values for each pixel \rightarrow Replace Ω by $\Omega \times \{R, G, B\}$.

Algorithm: Microtexture inpainting

```
Input: Mask M \subset \Omega, texture u on \Omega \setminus M
```

Define C as a border of M with width w = 3 pixels

- From a restriction v of u to $\omega \subset \Omega \setminus M$, compute \bar{v} , t_v , and $t_v * \tilde{t}_v$
- Store the matrix $\Gamma_{|\mathcal{C} imes \mathcal{C}}(c, d) = t_v * \tilde{t}_v(c-d), \ c, d \in \mathcal{C}$
- Draw a Gaussian sample $F = t_v * W$
- Compute $\psi_1 = \Gamma_{|\mathcal{C} \times \mathcal{C}}^{-1}(u_{|\mathcal{C}} \bar{v})$ and $\psi_2 = \Gamma_{|\mathcal{C} \times \mathcal{C}}^{-1}F_{|\mathcal{C}}$
- Extend ψ_1 and ψ_2 by zero-padding to get Ψ_1 and Ψ_2
- Compute $(u \bar{v})^* = t_v * \tilde{t}_v * \Psi_1$, $F^* = t_v * \tilde{t}_v * \Psi_2$

Output: $\bar{v} + (u - \bar{v})^* + F - F^*$

Overall complexity: $\mathcal{O}(|\mathcal{C}|^3 + |\Omega| \log |\Omega|)$.

Gaussian Texture Inpainting

Results

Outline

Microtexture Synthesis by Example

Gaussian Texture Inpainting

Results

Gaussian Texture Inpainting

Results •000000

Validation

First, we inpaint a texture with an oracle Gaussian model.

Original

Gaussian Texture Inpainting

Results •000000

Validation

First, we inpaint a texture with an oracle Gaussian model.

Original

Masked input

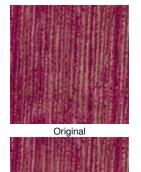
Conditioning set

Gaussian Texture Inpainting

Results •000000

Validation

First, we inpaint a texture with an oracle Gaussian model.



Masked input

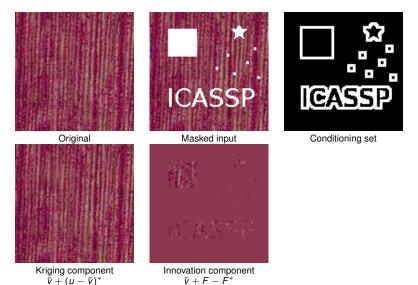
Conditioning set

Gaussian Texture Inpainting

Results •000000

Validation

First, we inpaint a texture with an oracle Gaussian model.

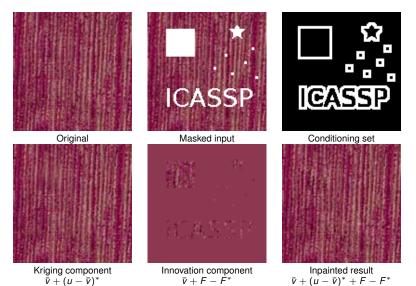


Gaussian Texture Inpainting

Results •000000

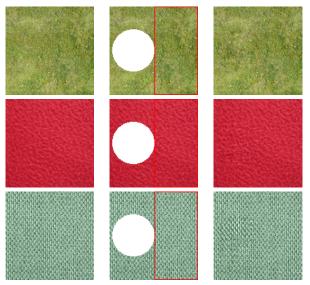
Validation

First, we inpaint a texture with an oracle Gaussian model.



Results 000000

Inpainting Results



The Gaussian model is estimated on the right part $\boldsymbol{\omega}$ of the image.

Results 0000000

Comparison (I)

Original

Kriging component

[Efros & Leung, 1999]

Our result

Gaussian Texture Inpainting

Results 0000000

Comparison (II)

Original

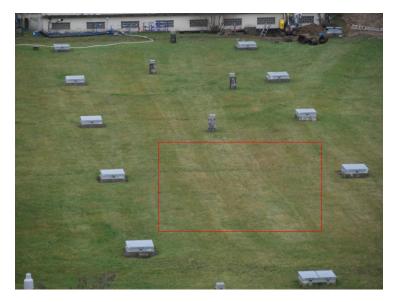
TV inpainting [Chan & Shen, 2002]

Our result

[Criminisi et al, 2004]

Gaussian Texture Inpainting

Results 0000000



Gaussian Texture Inpainting

Results 0000000

Gaussian Texture Inpainting

Results 0000000

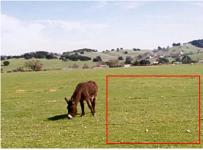
Gaussian Texture Inpainting

Results 0000000

Gaussian Texture Inpainting

Results 000000

Inpainting Composite Textures



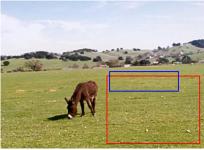
Original

Inpainted

• Limitation: the estimated Gaussian model is stationary.

Results 000000

Inpainting Composite Textures



Original

Inpainted with two ADSN models

• Limitation: the estimated Gaussian model is stationary.

Results 0000000

Conclusion

CONCLUSIONS:

- Microtexture inpaiting can be addressed with perfect Gaussian conditional simulation.
- Limited to stationary Gaussian textures.
- + Guaranteed to respect the Gaussian texture model.
- + Can inpaint holes of any shape and size in a reasonable time.

PERSPECTIVES:

- Solve more efficiently the linear systems involving $\Gamma_{|\mathcal{C}\times\mathcal{C}}.$
- Use a more involved procedure for the estimation of a Gaussian model on a masked exemplar.
- Extend the conditional simulation to a non-stationary case
 → inpainting of non-texture images.

SOURCE CODES AND A TUTORIAL are available on my website

www.math-info.univ-paris5.fr/~aleclair/gaussian_inpainting/

THANK YOU FOR YOUR ATTENTION!