Multi-Task Joint-Learning for Robust Voice Activity Detection

Yimeng Zhuang, Sibo Tong, Maofan Yin, Yanmin Qian, Kai Yu

Speech Lab
Department of Computer Science & Engineering
Shanghai Jiao Tong University

October 2016

VAD Overview

- Voice activity detection
 - A technique used in speech processing in which the presence or absence of human speech is detected
- Model based VAD
 - Zero crossings rate
 - Energy
 - Long term spectral
 - Gaussian mixture model(GMM)
 - Deep neural network(DNN) based VAD

Basic DNN based VAD

Multi-frame prediction

$$\mathcal{L}_{vad}(\mathbf{W}) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{t=-M}^{M} \lambda_t \sum_{i=1}^{2} d_{s_{(n+t)i}} \log P(s_{(n+t)i} | \mathbf{o}_n, \mathbf{W})$$
 (1)

Train multi-frame DNN with multi-task joint-learning

$$\mathcal{L}(\mathbf{W}) = \mathcal{L}_{vad}(\mathbf{W}) + \frac{1}{N} \sum_{n=1}^{N} \parallel \hat{\mathbf{o}}_{n} - \mathbf{o}_{n} \parallel_{2}^{2} + \kappa \parallel \mathbf{W} \parallel_{2}^{2}$$
 (2)

Prediction

- Enhancement layer is removed
- Functions to combine multiple prediction results
- Maximum:

$$P(s_t|\mathbf{o}, \mathbf{W}) = \max_{-M \le i \le M} \{P(s_t|\mathbf{o}_{t+i}, \mathbf{W})\}$$
(3)

Arithmetic mean:

$$P(s_t|\mathbf{o}, \mathbf{W}) = \frac{1}{2M+1} \sum_{i=-M}^{M} P(s_t|\mathbf{o}_{t+i}, \mathbf{W})$$
 (4)

Harmonic mean:

$$\frac{1}{P(s_t|\mathbf{o}, \mathbf{W})} = \frac{1}{2M+1} \sum_{i=-M}^{M} \frac{1}{P(s_t|\mathbf{o}_{t+i}, \mathbf{W})}$$
(5)

Geometric mean:

$$\log P(s_t|\mathbf{o}, \mathbf{W}) = \frac{1}{2M+1} \sum_{i=-M}^{M} \log P(s_t|\mathbf{o}_{t+i}, \mathbf{W})$$
 (6)

Experiment Setup

- Aurora 4 dataset is used
- Six different types of noises, including airport, babble, car, restaurant, street and train
- ▶ 10-20 dB SNR
- ▶ 7 test sets, including the clean set and six noise sets (seen noise)
- ► To simulate a more realistic scenario, an unseen noise test set is designed with 100 noise types

Choosing context window size and score combination methods

Frame-level evaluation (AUC)

Hidden layers	Noise condition	Single frame	Multi-frame	Multi-frame + Multi-task
2 (1+1)	clean	99.75	99.78	99.79
	seen	98.85	98.95	99.00
	unseen	96.62	97.35	97.72
3 (2+1)	clean	99.76	99.79	99.79
	seen	98.90	99.03	99.08
	unseen	96.82	97.58	97.95

- ► The model of multi-frame prediction with multi-task joint-learning yields best results
- The multi-task approach is an effective method to further impove VAD performance at frame-level.

Segment-level evaluation (\mathcal{J}_{VAD})

Hidden layers	Noise condition	Single frame	Multi-frame	Multi-frame +Multi-task
2 (1+1)	clean	81.6	90.28	91.0
	seen	55.4	71.81	71.9
	unseen	45.9	63.80	65.7
3 (2+1)	clean	82.2	90.23	91.3
	seen	56.5	71.89	75.1
	unseen	46.0	63.86	66.6

 $ightharpoonup \mathcal{J}_{VAD}$ is sensitive to boundary accuracy and the total number of speech/non-speech segments. Improved \mathcal{J}_{VAD} suggests that the proposed approaches produce more accurate boundaries and less fragiles.

Conclusion

- Multi-frame prediction with multi-task joint learning is utilized for VAD
- ► The proposed approach need to predict classification posteriors covering the neighboring multiple frames
- ► A speech enhancement task is jointly trained in order to generate better regression ability
- Future work
 - More experiments are needed to exam whether other score combination functions can get a better performance
 - Also it is worth exploiting a postprocessing method that suits this new proposed approach