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Overview

The Concept

Semi-Supervised Classification model using Selective Pixel Removal
and APGL Inpainting.

1 Hand-Select/work with pre-known endmembers.

2 Using a PCA scheme, remove parts of pixels that are not
within a threshold distance of an endmember.

3 Using APGL and a modified APGL algorithm for matrix
completion, reconstruct the hyperspectral image

4 Classification can now be done for each pixel using the direct
Euclidean distance from the endmembers
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PCA Initialization

PCA Initialization

1 Order the pixels (rows) based on distance to nearest
endmember.

2 Order bands (columns) of each pixel pseudo-randomly based
on top PCA bands.
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PCA Initialization

PCA Initialization

2 Top 20% is kept as index set.
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PCA Initialization

PCA Initialization-Band by Band
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Inpainting Algorithm

APGL: Original Algorithm

1 The APGL (Accelerated Proximal Gradient with Linesearch)
algorithm minimizes a problem of the form:

arg min
X

1

2
||A(X )− b||22 + µ||X ||∗

2 A is a linear operator that can be thought of as the index set
from X , the original image that we’re trying to reconstruct, to
b, the partial image that we observe.

3 Minimizing the rank of X corresponds to the stipulation that
each pixel is the linear combination of a small set of
endmembers.
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Inpainting Algorithm

APGL-Hyp Algorithm

1 Add a penalization term for distance of inpainted pixels from
endmembers.

2 Instead of minimizing:

arg min
X

1

2
||A(X )− b||22 + µ||X ||∗

we minimize

arg min
X

1

2
||A(X )− b||22 + µ||X ||∗ +

λ

2
||X − CX ||2F

where “CX” is a projection of each pixel onto the nearest
endmember.
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Inpainting Algorithm

APGL Algorithm: Proximal Gradient Method

Solve a minimization problem of the form:

F (X ) = f (X ) + P(X )

P is proper, convex, lower, semicontinuous: ||X ||∗ is an
acceptable P.

f is convex, smooth, and continuously differentiable on domP

Use iterative interpolation:{
X k = Sτk (G k)

G k+1 = X k − (τk)−1A∗(A(X k)− b)
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Inpainting Algorithm

APGL Hyperspectral Algorithm
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Data-Sharpening Effects

Datasets

1 Kiwi Dataset
Close-up on a kiwi fruit, taken using a Specim AISA
Hyperspectral Sensor.
original image 848 bands of wavelengths between 391.52 and
1007.37 nm taken from 0.7 to 0.76 nanometers apart, we
worked with bands 250 to 449
250 x 351 x 200

2 Chemical Plume Dataset
Chemical plume imaged from long wave infrared spectrometers
placed 2km away by the John Hopkins University Applied
Physics Laboratory
128 x 320 x 129

3 Salinas-A Dataset
subscene of the Salinas dataset, taken by the AVIRIS sensor
over Salinas Valley
86 x 83 x 204
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Data-Sharpening Effects

Pixel-Smoothing

Pictured above: comparison of a pixel from the Kiwi Dataset with the same pixel from

the APGL and APGL-Hyp sharpened datacube.
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Data-Sharpening Effects

Band-by-Band Sharpening
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Classification Results

Salinas-A Dataset

Salinas-A Dataset
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Classification Results

Salinas-A Dataset

Salinas-A Dataset

.. .. .. ..
Algorithm Time Accuracy
K-Means 1.04 69.52 %

H2NMF 2.41 70.08 %

NLTV 53.83 80.42 %

APGL 29.98 76.93 %

APGL Hyp 65.95 69.60 %
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Classification Results

Salinas-A Dataset

Salinas-A Dataset: 10 % Pixels Replaced
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Classification Results

Salinas-A Dataset

Salinas-A Dataset: 10% Pixels Replaced

.. .. .. ..
Algorithm Time Prior Accuracy Accuracy 10% Replaced
K-Means 4.60 69.55% 50.90%

H2NMF 1.75 70.08 % 58.36%

NLTV 54.23 80.42% 71.02%

APGL 33.57 76.93 % 76.78 %

APGL Hyp 77.73 69.60% 72.57%
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Classification Results

Kiwi Dataset

Kiwi Dataset
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Classification Results

Kiwi Dataset

Kiwi Dataset

.. ..
Algorithm Time Accuracy
K-Means 9.5964 64.14%

H2NMF 7.2750 58.72%

NLTV 251.1266 77.54%

APGL 220.3274 85.63%

APGL Hyp 416.0232 86.63%
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Classification Results

Kiwi Dataset

Kiwi Dataset: 10% Pixels Replaced
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Classification Results

Kiwi Dataset

Kiwi Dataset: 10% Pixels Replaced

.. ..
Algorithm Time Prior Accuracy Accuracy 10% Replaced
K-Means 10.0953 64.14% 53.07%

H2NMF 8.0856 58.72% 45.14%

NLTV 279.1046 77.54% 52.24%

APGL 206.0447 85.63% 79.78%

APGL Hyp 572.2304 86.63% 79.30%
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Classification Results

Chemical Plume Dataset

Chemical Plume Dataset
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Classification Results

Chemical Plume Dataset

Chemical Plume Dataset

.. .. .. ..
Algorithm Time Accuracy
K-Means 2.4594 81.44%

H2NMF 1.9909 63.42%

NLTV 92.4825 66.21%

APGL 27.6438 87.44%

APGL Hyp 49.1695 87.24%
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Classification Results

Chemical Plume Dataset

Chemical Plume Dataset: 10 % Pixels Replaced
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Classification Results

Chemical Plume Dataset

Chemical Plume Dataset: 10% Pixels Replaced

.. .. .. ..
Algorithm Time Prior Accuracy Accuracy 10% Replaced
K-Means N/A 81.44% N/A

H2NMF 2.2981 63.42% 36.23%

NLTV 99.6240 66.21% 66.53%

APGL 44.1697 87.44% 85.43%

APGL Hyp 49.1466 87.24% 85.29%
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Classification Results

Additional Effects

Full Pixel Removal
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Classification Results

Additional Effects

Full Pixel Removal

Percent Pixel Removal Accuracy: APGL Accuracy: APGL Hyp

10% 85.99% 85.83%

20% 85.31% 85.36%

30% 81.85% 83.45%

40% 71.08% 81.77%

50% 60.66% 69.80%

60% 50.66% 63.42%

70% 48.61% 51.95%

80% 43.94% 44.36%
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