

# Semi-supervised Learning of Camera Motion from a Blurred Image

Nimisha T M\*, Vijay Rengarajan<sup>†</sup>, and Rajagopalan Ambasamudram<sup>\*</sup> \*Indian Institute of Technology Madras, <sup>†</sup>Carnegie Mellon University

Presented by: Subeesh Vasu IPCV Lab (<u>http://www.ee.iitm.ac.in/ipcvlab/</u>) Indian Institute of Technology Madras

## **Problem Statement**

Given a single space-variant motion blurred image, estimate motion underwent by camera during the exposure time.

#### Space variant blurred image



Estimate camera motion





#### **Motion Estimation**

[1] Ayan ECCV 2016

• Estimates uniform motion kernels

[1] Ayan Chakrabarti, "A neural approach to blind motion deblurring," ECCV 2016.



#### **Motion Estimation**

[2] Sun et al. CVPR 2015

- Assumes parametric kernels
- Performs kernel classification over patches

[2] Jian Sun, Wenfei Cao, Zongben Xu, and Jean Ponce, "Learning a convolutional neural network for non-uniform motion blur removal," CVPR 2015.



[3] Nah, S., Kim, T.H., Lee, K.M., "Deep multi-scale convolutional neural network for dynamic scene deblurring", CVPR 2017



#### **Change Detection**

[4,5] Vijay et al. ECCV 2014/TPAMI 2016

[4] Vijay Rengarajan, Rajagopalan A N and Aravind R, "Change detection in the presence of motion blur and rolling shutter effect," ECCV 2014.

[5] Vijay Rengarajan, Rajagopalan A N, Aravind R, and Guna Seetharaman, "Image registration and change detection under rolling shutter motion blur," TPAMI 2017.



• Estimate global camera motion rather than local blur kernels

• Leverage the availability of clean image and ground truth motion during training

• Show applications of the estimated motion in **Deblurring** and **Change detection** 





 $\omega_2$ 

















 $\omega_1$ 

 $\omega_2$ 





Blurred image is a weighted sum of warped instances of its clean version.

 $B = \sum_{k=1}^{|S|} \omega_k \mathcal{H}_k(L)$ 

| S          | Discretized pose space |
|------------|------------------------|
| ${\cal H}$ | Warping matrix         |
| $\omega$   | Pose space weights     |

### **Camera Pose Weights**



• Camera Pose Weights indicates the fraction of the exposure time spend at each pose

## **Camera Pose Weights**



• Camera Pose Weights indicates the fraction of the exposure time spend at each pose

### **Properties:**

Energy preserving

$$\sum_{k=1}^{|S|} \omega_k = 1$$

• Sparse











### **Network Architecture**





Supervised cost

• The predicted pose weights are compared with GT using  $l_2$  loss

$$E_{mse} = \|\widehat{\Omega} - \Omega_{orig}\|_2^2$$

#### Supervised cost

- Camera sees only a sparse set of poses from the entire camera pose space
- Hence, impose sparsity constraint

$$E_{spar} = \|\widehat{\Omega}\|_1$$

#### Supervised cost

- Camera sees only a sparse set of poses from the entire camera pose space
- Hence, impose sparsity constraint

$$E_{spar} = \|\widehat{\Omega}\|_1$$

$$E_{sup} = \lambda_1 E_{mse} + \lambda_2 E_{spar}$$

**Unsupervised cost** 

• Exploit the association of the latent image and camera motion for better convergence

**Unsupervised cost** 

• Exploit the association of the latent image and camera motion for better convergence

$$E_{unsup} = \lambda_3 \|B - \sum_{k=1}^{|S|} \widehat{\omega}_k \mathcal{H}_k(L)\|_2^2$$
  
Image formation forward model  
 $E_{unsup} = \lambda_3 \|b - A\widehat{\Omega}\|_2^2$   
Lexicographically ordered column vectors of blurred image



• Prepared the training and validation datasets from PASCAL VOC dataset



- Prepared the training and validation datasets from PASCAL VOC dataset
- Resized images to 128 x 128



- Prepared the training and validation datasets from PASCAL VOC dataset
- Resized images to 128 x 128
- Blurred images are generated using 200k 3D camera motion trajectories



- Prepared the training and validation datasets from PASCAL VOC dataset
- Resized images to 128 x 128
- Blurred images are generated using 200k 3D camera motion trajectories
- Training dataset size of 200k **space-variantly** blurred images



#### **3D** camera motion estimation:

 Assumed in-plane translations (t<sub>x</sub> and t<sub>y</sub>) ranging from [-2:2] pixels with a step size of one pixel



#### 3D camera motion estimation:

- Assumed in-plane translations (t<sub>x</sub> and t<sub>y</sub>) ranging from [-2:2] pixels with a step size of one pixel
- In-plane rotation  $r_z \in [-5:5]^\circ$  with a step size of 0.5



#### 3D camera motion estimation:

- Assumed in-plane translations (t<sub>x</sub> and t<sub>y</sub>) ranging from [-2:2] pixels with a step size of one pixel
- In-plane rotation  $r_z \in [-5:5]^\circ$  with a step size of 0.5
- Total pose space containing |S| = 525 poses.

## **Error plots**



20



**Quantitative metric:** Estimated camera motion and ground truth (GT) motion compared using Normalized Cross Correlation (NCC)



**Quantitative metric:** Estimated camera motion and ground truth (GT) motion compared using Normalized Cross Correlation (NCC)

NCC values near to 1 indicates better estimates



**Quantitative metric:** Estimated camera motion and ground truth (GT) motion compared using Normalized Cross Correlation (NCC)

NCC values near to 1 indicates better estimates

Visual results in applications of

- Deblurring
- Change detection

## **Quantitative Evaluation of Motion Estimation**

• Took 10 different GT camera motions from the dataset in [6]

[6] Rolf K"ohler, Michael Hirsch, Betty Mohler, Bernhard Sch"olkopf, and Stefan Harmeling, "Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database," ECCV 2012.

# **Quantitative Evaluation of Motion Estimation**

- Took 10 different GT camera motions from the dataset in [6]
- Clean images from the test set of PASCAL VOC dataset are blurred using these motion

# **Quantitative Evaluation of Motion Estimation**

- Took 10 different GT camera motions from the dataset in [6]
- Clean images from the test set of PASCAL VOC dataset are blurred using these motion
- Predicted the camera motion using our network

### **Visual Result**



Original blur kernels

Estimated blur kernels







From estimated camera motion, a non-blind deblurring can be carried out as

$$\min_l \{ \|b - \widehat{\mathcal{M}}l\|_2^2 + \lambda |
abla l|_1 \}$$



### Clean image Blurred input





#### Estimated camera motion



Estimated camera motion



Ordered GT and estimated camera motion

### **Results**

### **Blurred input**

Deblurred output using Nah et al. [3]







[3] Nah, S., Kim, T.H., Lee, K.M, "Deep multi-scale convolutional neural network for dynamic scene deblurring", CVPR 2017.

### Results

**Blurred input** 

Deblurred output using Nah et al. [3]

















Input 1

Input 2







Input 1

Input 2



Input 1

Input 2

Direct differencing



Input 1 (I<sub>1</sub>)

Input 2 (I<sub>2</sub>)

abs  $(I_2 \text{ Nah et al. } [3] - I_1)$ 



[4] Vijay Rengarajan, Rajagopalan A N and Aravind R, "Change detection in the presence of motion blur and rolling shutter effect," ECCV 2014.





Input 2



# **Quantitative Comparison for Change Detection**

| Methods                                | PCC   | JC     | YC     |
|----------------------------------------|-------|--------|--------|
| Ours                                   | 99.31 | 0.6808 | 0.7488 |
| ${ m I_2}$ Nah et al. [3] - ${ m I_1}$ | 89.50 | 0.1198 | 0.1193 |
| Vijay et al. [4]                       | 94.87 | 0.2613 | 0.2731 |
|                                        |       |        |        |

Yule coefficient :

YC

TP/(TP+FP) + TN/(TN+FN)-1 |

T/F : True/False, P/N : Positive/Negative

• Input size is limited to 128 x 128

• Input size is limited to 128 x 128

#### Reason:

**G** FC layers involved in the network

- Input size is limited to 128 x 128
- Pose space restricted to 525 poses

- Input size is limited to 128 x 128
- Pose space restricted to 525 poses

#### Reason:

- The size of A matrix is controlled by input image size and number of poses.
- □ Increasing any of these results in increased training time and memory utilization.



- Proposed a network to estimate global camera motion from blurred image
- Used cost functions that make use of both clean image and ground truth motion
- Proposed work achieve comparable performance in motion deblurring and state-of-the-art results in change detection

## Thank You