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Introduction
ASR Decoding & Confidence Measure

Speech Input

s ASR Decoding s
s Inference by AM/LM/lex ... Speech Analysis

s Model and search are both imperfect |©

Pronunciation
Lexicon

. OW) Decoder Language Modelj
m Confidence Measure (CM) PO rma pomrpn)
= Reliability evaluation of ASR results |
[} Trad|t|ona| CM Recognition Result

m Predictor features based CM
m Acoustic score, duration, entropy ... (NOT ideal)
m CRF, NN ... (need training stage; train # test)

s Hypothesis Posterior based CM
m Theoritically sounder




Introduction
Hypothesis Posterior based CM

m ASR as the maximum a
posterior (MAP) decision
process
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Introduction
Hypothesis Posterior based CM

m ASR as the maximum a = Lattice quality is the

posterior (MAP) decision bottleneck
Process s Not compact
R = Boundary unstable
W =argmaxp(W | X)
wek OH

= argmax pX W) -p() /AH
ver  p(X) @

p(X) =) p(X,H)=>Y p(H) p(X|H) I S o S
H H

m Not precise
m Beam prune

m His from lattice/filler
m Both imperfect

WE NEED NEW MODEL !
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Introduction

from HMM to CTC acoustic model

m From HMM to CTC: do better in sequential modeling
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from HMM to CTC acoustic model

m From HMM to CTC: do better in sequential modeling

m CTC model: learn the many-to- one function of 3
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Introduction

from HMM to CTC acoustic model

m From HMM to CTC: do better in sequential modeling
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s CTC model: learn the many-to-one function of 3

Plx)= Y P(rx)= > 1] B:L — L
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Frame Sync. to Phone Sync.

= frame synchronous Viterbi beam search in CTC

w" = argmax{P(w)p(x|w)}

= arg‘I:laX{P(W)P(X“w)} (1)
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Frame Sync. to Phone Sync.

= frame synchronous Viterbi beam search in CTC

w’ = argmax{ P(w)p(x|w)} = argmax{ P(w)p(x|lw)} (1)

W W

_ P(ly|x)
= argvnvla,x {P(W] n}itx Pll) } (2)
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= frame sync. to phone synchronous decoding
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CTC Lattice

m CTC Lattice - Extremely Compact Acoustic Information
Preserver

Time phone label : acoustic score

04s | <blk >:0.2 nsn:05 th:0.2 ch:0.1
09s | <blk>:0.3 ow:0.6 spn:0.1
1.5 | <blk >:0.2 ch:03 a0:02 aw:0.2 azx:0.1

<eps>:<blk>/-0.2

<eps>:<blk>/-0.3 @
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Hypothesis Posterior CM
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m Setup
m Swb 300h, 2-2.5M parameters, NIST hub5e-swb subset
m details on our paper

m Baseline WER performance

Model Unit AM Decoding || WER
CD-state DNN-HMM FSD 16.7
FSD 18.7
Cl-phone = LSTM-CTC PSD 18 8

m CM Evaluation: Normalised Cross Entropy (NCE)

NCE — H(C) - H(C|x) H(C) corresponds to the entropy of the tag sequence,
H(C) H(C|x) is the entropy of the confidence score sequence

s The higher the better
12




s Hypothesis Posterior CM 1

AM Decoding CM NCE
DNN-HMM FSD CN 0.172
FSD CN 0.019

LSTM-CTC CN 0.224 \
PSD AC+CN :

s CN hypothesis posterior CM can’t be directly applied to CI-
phone-CTC model

= Blank allocation problem:
m e.g., ow <blk> ch <blk> <blk> <blk> ao <blk>

1 We also derive a PSD version of predictor based CM, detail comparison

/_ 13
can be referred to our paper. Gy XEAAAY




s Hypothesis Posterior CM 1

AM Decoding CM NCE
DNN-HMM FSD CN 0.172
FSD CN 0.019
LSTM-CTC CN 0.224 \
PSD AC+CN .

s CN hypothesis posterior CM can’t be directly applied to CI-

phone-CTC model

= Blank allocation problem:
m e.g., ow <blk> ch <blk> <blk> <blk> ao <blk>
m In PSD, CN hypothesis posterior CM can be successfully

applied

s Even with significantly better NCE: 0.224 - 0.172

1 We also derive a PSD version of predictor based CM, detail comparison
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can be referred to our paper.
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m Reason of Better CM
m Better lattice
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m Reason of Better CM
m Better lattice
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m Reason of Better CM
m Larger CN depth 2> more competing information

CN depth (competitor/sausage)
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m Reason of Better CM
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m Reason of Better CM
m Larger CN depth 2> more competing information

CN depth (competitor/sausage)
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m The potential of compact and precise PSD CTC lattice in
preserving acoustic information was utilized to form better CMs

m PSD version of predictor based CM was proposed with
elaborate phonemic normalization and blank info (in paper)

m The characteristics of lattice and confusion network
generated from PSD framework were carefully investigated,
and CN hypothesis posterior CM was proposed

m The two types of CMs can be combined together as a pair of
complements

m Future work: applying proposed CMs as predictors in model
training framework
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