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1.Introduction

• The problem of estimating an N -dimensional complex signal x from M magnitude-only

linear measurements y is called phase retrieval.

• A basic phase retrieval model with intensity measurements is

yi = |(Ax)i|2 + ni, i = 1, · · · ,M (1)

where |·| is the element-wise magnitude, yi and complex measurement matrix A ∈
CM×N are known beforehand and n = [n1, · · · , nM ]T denotes noise.

• Phase retrieval is an inherently non-convex ill-posed inverse problem. Normally, to

recover a signal with large probability, the number of measurements needs to be greater

than the dimensions of incident signal.

• In practice, the undersampled phase retrieval problem is often encountered, which refers

to the case of M < N .

• In this work, we consider undersampled phase retrieval and assume that the incident

signal is sparse.
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2. Phase Retrieval by Majorization-Minimization (MM) Technique

• The undersampled phase retrieval problem as the following optimization model

min
x

M∑
i=1

(
√
yi − |(Ax)i|)2 + λ ∥x∥1 (2)

where the parameter λ > 0 is a regularization penalty factor and ∥x∥1 denotes ℓ1
norm of vector x, which is used to regularize the ill-posed phase retrieval problem and

promote sparsity in x.

• Employing the MM technique, in [13], an efficient C-PRIME method was proposed to

solve a convex surrogate problem instead. The surrogate optimization problem is convex

with regard to x and equivalent to the following problem

x = argmin
x

[
C ∥x − c∥2

2 + λ ∥x∥1

]
(3)

where C is a constant satisfying C ≥ λmax(A
HA) and λmax(·) denotes the largest

eigenvalue of a matrix.
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• In (3), the vector c is a constant independent of the variable x:

c = x
k−1 −

1

C
A

H

(
Ax

k−1 − √
y ⊙ e

j ang(Axk−1)

)
(4)

• The C-PRIME method solves the surrogate optimization problem in (3) with a simple

closed-form solution at the k iteration

x
k
= e

j ang(c) ⊙ max

{
|c| −

λ

2C
, 0

}
(5)

where ang(·) denotes the phase angle and ⊙ denotes the Hadamard (element-wise)

product of two vectors.
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3. Proposed Phase Retrieval based on the Gradient Framework

• The optimization in (3) can be considered the following general formulation

x = argmin
x

[F (x) = f (x) + g (x)] (6)

where f is a smooth convex function and g is a continuous convex function which is

possibly nonsmooth.

• For the optimization problem (3), let f (x) = C ∥x − c∥2
2 and g (x) = λ ∥x∥1.

• We considered a given quantity η which may or may not be equal to xk−1.

According to Taylor series expansion and the proximal regularization theorem [14], for

the given point η, a quadratic approximation of F (x) = f (x)+g (x) can be written

as

QL (x,η) = f (η) + ⟨x − η,∇f (η)⟩ +
L

2
∥x − η∥2

+ g (x) (7)

where L plays the role of a step and ∇f (·) is the complex gradient vector.

• Then, we have

x
k
= argmin

x
{QL (x,η)} (8)
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• Discarding the constant term about η, the optimization function (8) is simplified as

x
k
= argmin

{
g (x) +

L

2

∥∥∥∥x −
(
η −

1

L
∇f (η)

)∥∥∥∥2
}

(9)

• We know that f (x) = C ∥x − c∥2
2 and then can get

∇f (η) = 2C (η − c) (10)

• After that, xk can be represented as

x
k
= argmin

{
λ ∥x∥1 +

L

2

∥∥∥∥x −
[
η −

2C

L
(η − c)

]∥∥∥∥2
}

(11)

• Furthermore, according to the soft thresholding method [16], we have

x
k
= e

j ang(b) ⊙ max

{
|b| −

λ

L
, 0

}
(12)

6



An Undersampled Phase Retrieval Algorithm via Gradient Iteration

where

b = η −
2C

L
(η − c) (13)

• Then, if η = xk−1, substituting (4) into (13) and simplifying it, we have

b = x
k−1 −

2

L
A

H

(
Ax

k−1 − √
y ⊙ e

j ang(Axk−1)

)
(14)

• It is interesting that we obtain the same solution of the problem (3) as the C-PRIME

algorithm in the case of L = 2C but from a totally different gradient theorem.

• Moreover, the C-PRIME method can be regarded as a special case of the proposed

G-PRIME in the case of η = xk−1.
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4. Design Examples

• The measurement matrix A is standard complex Gaussian distributed, corrupted with

real-valued additive white Gaussian noise and the original complex signal is generated

randomly.

• The length N of the original complex signal is set as 128 with sparsity level P = 8 and

the number of measurements is 120.

• The signal-to-noise ratio is SNR=25dB. The parameter C and regularization penalty

factor λ in all tested methods are set as C = λmax(A
HA) and λ = 0.1, respectively.

• We assign step size L = 2C for our proposed G-PRIME algorithm unless specified

otherwise.

• For the ISTA-PRIME algorithm [15], the iterative step size µ should satisfy µ ∈
(0, 1/||AHA||].
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5. Results

• Magnitude recovery ability: for the proposed G-PRIME algorithm, the magnitude curves

are shown in Fig. 1 at the 200th iteration.

• It is observed that the nonzero values in the recovered signal are almost the same as

those in the original signal, which proves that the G-PRIME algorithm can recover the

magnitude information successfully.
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Figure 1: Magnitudes of original and recovered signals.
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• Phase recovery ability: Fig. 2 plots the recovered signal at iteration k = 1, 20, 200.
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Figure 2: Original and recovered signals.
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• The recovered signal is a random complex vector at the first iteration and the position

of recovered signal is already close to that of the original signal after 200 iterations.

The phase recovery ability of the G-PRIME algorithm is also excellent.
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Figure 3: MSE versus iteration number.

• The MSE performance of the ISTA-PRIME (µ = 0.1, 1/||AHA||) [15], C-PRIME

[13] and the proposed G-PRIME algorithms are shown in Fig. 3. As mentioned above,
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the G-PRIME algorithm has the same solution as the C-PRIME algorithm in the case of

L = 2C. So the MSE curve of C-PRIME is not shown in Fig. 3.

• It is obvious that the G-PRIME (L = 2C), C-PRIME and ISTA-PRIME algorithms

have the same steady-state value 2 × 10−4.

• Furthermore, the G-PRIME (L = 2C) and C-PRIME algorithms converge when the

iteration number is close to 150 and the ISTA-PRIME algorithm approach convergence

when the iteration number reaches 170-190.

Conclusions:

• Inspired by the C-PRIME technique, a gradient-based PRIME algorithm is proposed to

solve a quadratic approximation of the original problem.

• The C-PRIME method can be regarded as a special case of the proposed G-PRIME

algorithm.

• Numerical results have confirmed that the proposed algorithm has excellent phase

recovery ability.
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