## General-Purpose Image Forensics Using Patch Likelihood under Image Statistical Models

The 7th IEEE International Workshop on Information Forensics and Security

Wei Fan, Kai Wang, and François Cayre

GIPSA-lab, Grenoble, France

18-11-2015

Proposed Method

Experimental Results

Conclusions O

## **Detecting Image Operations**



- Generality
  - Targeted
  - General-purpose

- Size
  - whole image
  - small image block

Experimental Results

Conclusions O

## **Analysis of Current Image Forensics**

- Targeted Forensics (*well studied*)
  - Exploit particular artifacts of *specific* image operation
  - Different features for different image operations
- General-Purpose Forensics (*little studied*)
  - Cope with *multiple* image operations
  - Possible to adopt powerful steganalytical features, e.g., SPAM
- Forensic classification on small image blocks
  - Important for revealing forgery semantics
  - Image block size  $\downarrow$   $\xrightarrow{usually}$  forensic performance  $\downarrow$  *leads to*
- X. Qiu et al., "A universal image forensic strategy based on steganalytic model". In: Proc. ACM IHMMSec, 2014, pp. 165-170
- T. Pevný et al., "Steganalysis by subtractive pixel adjacency matrix". IEEE TIFS 5, 2 (2010), pp. 215-224 3 / 13

Experimental Results

Conclusions O

## **Analysis of Current Image Forensics**

- Targeted Forensics (*well studied*)
  - Exploit particular artifacts of *specific* image operation
  - Different features for different image operations

 Most current forensic methods are targeted, and few results are reported on small image blocks

Generality
 2 Classification on small blocks

• Important for revealing forgery semantics

• Image block size  $\downarrow$ 

leads to

forensic performance .

X. Qiu et al., "A universal image forensic strategy based on steganalytic model". In: Proc. ACM IHMMSec, 2014, pp. 165-170

Proposed Method

Experimental Results 00000

Conclusions O

#### Motivation

#### Question

Given an image block, is it more like a natural, original block or a processed one?

#### **Proposed Solution**

Compare the average patch likelihood values calculated under different natural image statistical models

Gaussian Mixture Model (GMM)

$$L(\theta|\mathbf{x}) = p(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \mathbf{C}_k)$$

D. Zoran and Y. Weiss, "From learning models of natural image patches to whole image restoration". In: Proc. ICCV. 2011, pp. 479-486 Proposed Method

Experimental Results 00000

Conclusions 0

#### **Eigenvectors of GMM Covariance Matrices**



D. Zoran and Y. Weiss, "Natural images, Gaussian mixtures and dead leaves". In: Proc. NIPS. 2012, pp. 1736-1744 Proposed Method

Experimental Results 00000

Conclusions 0

#### **Eigenvectors of GMM Covariance Matrices**



 D. Zoran and Y. Weiss, "Natural images, Gaussian mixtures and dead leaves". In: Proc. NIPS. 2012, pp. 1736-1744
5 / 13

Proposed Method

Experimental Results 00000

Conclusions O

#### Hypothesis Testing

Test

$$\Lambda(\mathbf{X}) = \frac{1}{N}\sum_{i=1}^N \log \, L(\boldsymbol{\theta}_0|\mathbf{x}_i) - \frac{1}{N}\sum_{i=1}^N \log \, L(\boldsymbol{\theta}_1|\mathbf{x}_i) \gtrless \eta$$

- x<sub>i</sub>: overlapping patches extracted from image (block) X
- *H*<sub>0</sub>: X is original, unprocessed GMM parametrized by θ<sub>0</sub>

*H*<sub>1</sub>: X is processed by a certain image operation
*GMM parametrized by* θ<sub>1</sub>

**Decision Rule** 

$$\left( \begin{array}{cc} \text{reject } \mathcal{H}_0 & \text{if } \Lambda(\mathbf{X}) \leq \eta \\ \text{do not reject } \mathcal{H}_0 & \text{if } \Lambda(\mathbf{X}) > \eta \end{array} \right.$$

Proposed Method

Experimental Results •0000 Conclusions O

#### **Image Operations**

| ORI | no image processing                                                                                                                   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| GF  | Gaussian filtering with window size $3\times 3,$ and standard deviation $0.5$ to generate the filter kernel                           |
| JPG | JPEG compression with quality factor 90                                                                                               |
| MF  | median filtering with window size $3\times 3$                                                                                         |
| RS  | resampling with bicubic interpolation to scale the image to $80%$ of its original size                                                |
| USM | unsharp masking with window size $3 \times 3$ , and parameter $0.5$ for the Laplacian filter to generate the sharpening filter kernel |
| WGN | white Gaussian noise addition with standard deviation $2$                                                                             |

• 6 image operations, each of which is with one fixed parameter setting

Proposed Method

Experimental Results 0000 Conclusions O

#### Image Datasets

#### **(**) GFTR: 2457 images of size $512 \times 512$ for training

- SPAM (686-dimensional), 2457 samples (whole image or block)
- GMM (200 components),  ${\sim}1.2$  million extracted  $8\times8$  patches
- **②** GFTE: 2448 images of size  $512 \times 512$  for testing
  - whole image  $(512 \times 512)$ , 2448 samples for each image operation
  - image block ( $32 \times 32$ ,  $16 \times 16$ ),  $2448 \times 10$  samples for each image operation

- T. Pevný et al., "Steganalysis by subtractive pixel adjacency matrix". IEEE TIFS 5, 2 (2010), pp. 215-224
- ftp://firewall.teleco.uvigo.es:27244/DS\_01\_UTFI.zip
- ftp://lesc.dinfo.unifi.it/pub/Public/JPEGloc/dataset/

Proposed Method

Experimental Results

Conclusions O

. . . .

#### **Experimental Results**

| detection accuracy [9 |            |       |       |       |       | acy [%] |       |
|-----------------------|------------|-------|-------|-------|-------|---------|-------|
|                       |            | GF    | JPG   | MF    | RS    | USM     | WGN   |
| $512 \times 512$      | SPAM-based | 99.86 | 98.20 | 99.94 | 96.45 | 99.73   | 98.53 |
|                       | Proposed-S | 99.10 | 97.28 | 95.69 | 92.61 | 99.73   | 99.45 |
|                       | Proposed-T | 99.82 | 99.49 | 99.31 | 92.67 | 99.73   | 99.80 |
| $32 \times 32$        | SPAM-based | 99.35 | 94.18 | 99.43 | 89.23 | 98.76   | 95.04 |
|                       | Proposed-S | 97.69 | 95.83 | 93.81 | 90.96 | 99.22   | 95.50 |
|                       | Proposed-T | 97.73 | 96.04 | 93.99 | 90.96 | 99.21   | 97.55 |
| $16 \times 16$        | SPAM-based | 98.38 | 88.00 | 99.26 | 78.21 | 97.82   | 91.20 |
|                       | Proposed-S | 97.27 | 94.27 | 92.88 | 89.70 | 98.59   | 95.58 |
|                       | Proposed-T | 97.37 | 94.68 | 93.01 | 89.72 | 98.59   | 95.66 |

Proposed Method

Experimental Results

Conclusions O

#### **Experimental Results**

| Simple threshold: $\eta = 0$ |            |       |                       |       |       |       |         |
|------------------------------|------------|-------|-----------------------|-------|-------|-------|---------|
|                              |            |       | detection accuracy [% |       |       |       | acy [%] |
|                              |            | GF    | JPG                   | MF    | RS    | USM   | WGN     |
| $512 \times 512$             | SPAM-based | 99.86 | 98.20                 | 99.94 | 96.45 | 99.73 | 98.53   |
|                              | Proposed-S | 99.10 | 97.28                 | 95.69 | 92.61 | 99.73 | 99.45   |
|                              | Proposed-T | 99.82 | 99.49                 | 99.31 | 92.67 | 99.73 | 99.80   |
|                              | SPAM-based | 99.35 | 94.18                 | 99.43 | 89.23 | 98.76 | 95.04   |
| $32 \times 32$               | Proposed-S | 97.69 | 95.83                 | 93.81 | 90.96 | 99.22 | 95.50   |
|                              | Proposed-T | 97.73 | 96.04                 | 93.99 | 90.96 | 99.21 | 97.55   |
|                              | SPAM-based | 98.38 | 88.00                 | 99.26 | 78.21 | 97.82 | 91.20   |
| $16\times16$                 | Proposed-S | 97.27 | 94.27                 | 92.88 | 89.70 | 98.59 | 95.58   |
|                              | Proposed-T | 97.37 | 94.68                 | 93.01 | 89.72 | 98.59 | 95.66   |
|                              |            |       |                       |       |       |       |         |

Trained threshold  $\eta$  on GFTR dataset

Proposed Method

Experimental Results

Conclusions O

#### **Experimental Results**

| detection accuracy [9 |            |       |       |       |       | асу [%] |       |
|-----------------------|------------|-------|-------|-------|-------|---------|-------|
|                       |            | GF    | JPG   | MF    | RS    | USM     | WGN   |
| $512 \times 512$      | SPAM-based | 99.86 | 98.20 | 99.94 | 96.45 | 99.73   | 98.53 |
|                       | Proposed-S | 99.10 | 97.28 | 95.69 | 92.61 | 99.73   | 99.45 |
|                       | Proposed-T | 99.82 | 99.49 | 99.31 | 92.67 | 99.73   | 99.80 |
| $32 \times 32$        | SPAM-based | 99.35 | 94.18 | 99.43 | 89.23 | 98.76   | 95.04 |
|                       | Proposed-S | 97.69 | 95.83 | 93.81 | 90.96 | 99.22   | 95.50 |
|                       | Proposed-T | 97.73 | 96.04 | 93.99 | 90.96 | 99.21   | 97.55 |
| $16 \times 16$        | SPAM-based | 98.38 | 88.00 | 99.26 | 78.21 | 97.82   | 91.20 |
|                       | Proposed-S | 97.27 | 94.27 | 92.88 | 89.70 | 98.59   | 95.58 |
|                       | Proposed-T | 97.37 | 94.68 | 93.01 | 89.72 | 98.59   | 95.66 |

- At least comparable to the SPAM feature
- Especially advantageous on small blocks

Proposed Method

Experimental Results

Conclusions 0

#### **Fine-Grained Image Tampering Localization**



ORI









Proposed Method

Experimental Results

Conclusions 0

#### **Fine-Grained Image Tampering Localization**



Proposed Method

Experimental Results

Conclusions 0

## **Fine-Grained Image Tampering Localization**



ORI



SPAM-based



Forgery (with RS)



Proposed

Proposed Method

Experimental Results

Conclusions 0

11 / 13

## **Fine-Grained Image Tampering Localization**



ORI



SPAM-based



Forgery (with RS)



Proposed

Proposed Method

Experimental Results 00000

Conclusions

#### Conclusions

- A general-purpose framework for image forensics
  - Comparison of average patch likelihood values calculated under different image models
  - At least comparable performance compared with the SPAM feature
  - Conceptually simplicity, no handcrafted feature extraction, and easiness to be extended

#### Perspectives

- Multi-class classification
- More image operations with more parameters
- Richer natural image statistical models

Proposed Method

Experimental Results 00000

Conclusions O

## Thank you for your attention!

# Q & A