Linear estimation based primary-ambient extraction for stereo audio signals

Jianjun HE^a, Ee-Leng Tan^a, Woon-Seng Gan^a

^a DSP Lab, School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore, 639798, Singapore

Emails(jhe007@e.ntu.edu.sg, etanel@ntu.edu.sg, ewsgan@ntu.edu.sg)

IEEE TRANSACTIONS ON AUDIO, SPEECH

AND LANGUAGE PROCESSING

4 IEEE

IEEE/ACM Transactions on Audio, Speech and Language Processing, vol. 22, no. 2, pp. 505-517, Feb. 2014

DOI: 10.1109/TASLP.2013.2297015

Introduction

Applications of PAE

(EA)

Stereo Signal Model

Primary correlated	$\mathbf{p}_1 = k\mathbf{p}_0$
Ambient uncorrelated	$\mathbf{a}_0 \perp \mathbf{a}_1$
Primary ambient uncorrelated	$\mathbf{p}_i \perp \mathbf{a}_j,$ $\forall i, j \in \{0, 1\}$
Ambient power balanced	$P_{\mathbf{a}_0} = P_{\mathbf{a}_1}$

Assumptions

Primary panning factor PPF: $k = \frac{\mathbf{p}_1}{\mathbf{p}_0}$ Primary power ratio PPR: $\gamma = \frac{\text{Total primary power}}{\text{Total signal power}}$

Linear estimation framework in PAE

$$\begin{bmatrix} \hat{\mathbf{p}}_{0}^{T} \\ \hat{\mathbf{p}}_{1}^{T} \\ \hat{\mathbf{a}}_{0}^{T} \\ \hat{\mathbf{a}}_{0}^{T} \\ \hat{\mathbf{a}}_{1}^{T} \end{bmatrix} = \begin{bmatrix} w_{P0,0} & w_{P0,1} \\ w_{P1,0} & w_{P1,1} \\ w_{A0,0} & w_{A0,1} \\ w_{A0,0} & w_{A0,1} \\ w_{A1,0} & w_{A1,1} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{0}^{T} \\ \mathbf{x}_{0}^{T} \\ \mathbf{x}_{1}^{T} \end{bmatrix} = \mathbf{W} \begin{bmatrix} \mathbf{x}_{0}^{T} \\ \mathbf{x}_{1}^{T} \\ \mathbf{x}_{1}^{T} \end{bmatrix}$$

Signal = Primary + Ambient

Error = **Dist**ortion + **Int**erference + **Leak**age

Extraction Accuracy	ESR, DSR, ISR, LSR
Spatial Accuracy	ICC, ICTD, ICLD

PAE based on Linear estimation

Scaling factor $\overline{c_{\rm P}}$

Blue solid lines: primary component; Green dotted lines: ambient component.

PAE based on Linear estimation – Performance of the four approaches

Performance	Primary component			Ambient compone	component	
Measure	MDLS/PCA	MLLS/LS	MLLS/PCA	LS	MDLS	
ESR	$\frac{1-\gamma}{2\gamma}$	$\frac{1-\gamma}{1+\gamma}$	$\frac{1}{1+k^2}$	$\frac{1}{1+k^2}\frac{2\gamma}{1+\gamma}$	$\frac{2\gamma}{1+k^2+(k^2-1)\gamma}$	
LSR	$\frac{1-\gamma}{2\gamma}$	$\frac{1\!-\!\gamma}{2\gamma}\!\left(\frac{2\gamma}{1\!+\!\gamma}\right)^{\!2}$	0	$\frac{1}{1+k^2}\frac{2\gamma(1-\gamma)}{(1+\gamma)^2}$	$\frac{\left(1+k^2\right)\left(1-\gamma\right)2\gamma}{\left[\left(1+k^2\right)\left(1+\gamma\right)-2\gamma\right]^2}$	
DSR	0	$\left(\frac{1-\gamma}{1+\gamma}\right)^2$	$\left(\frac{1}{1+k^2}\right)^2$	$\left(\frac{1}{1+k^2}\frac{2\gamma}{1+\gamma}\right)^2$	0	
ISR	0		$\left(\frac{k}{1+k^2}\right)^2$	$\left(\frac{k}{1+k^2}\frac{2\gamma}{1+\gamma}\right)^2$	$\left[\frac{2k\gamma}{\left(1+k^2\right)\left(1+\gamma\right)-2\gamma}\right]^2$	
ICC(ICTD)	1(0)		1	$\frac{2k\gamma}{\sqrt{\left(1+k^2\right)^2-\left(1-k^2\right)^2\gamma^2}}$		
ICLD	<i>k</i> ²		$\frac{1}{k^2}$	$\frac{1}{k^{2}} \frac{1 + \gamma + k^{2} (1 - \gamma)}{1 + \gamma + \frac{1}{k^{2}} (1 - \gamma)}$	$\frac{1}{k^2} \frac{1-\gamma+k^2\left(1+\gamma\right)}{1-\gamma+\frac{1}{k^2}\left(1+\gamma\right)}$	

k : *PPF γ* : *PPR*

PAE using Adjustable Least squares (ALS)

Blue solid lines: primary component; Green dotted lines: ambient component.

PAE based on Linear estimation – Recommendations

Approach	Strengths		Weaknesses		Recommendations
PCA	•	No distortion in the extracted primary component; No primary leakage in the extracted ambient component; Primary and ambient components are uncorrelated;	•	Ambient component severely panned;	Spatial audio coding and interactive audio in gaming, where the primary component is more important than the ambient component.
LS	•	Minimum MSE in the extracted primary and ambient components;	•	Severe primary leakage in the extracted ambient component;	Applications in which both the primary and ambient components are extracted, processed, and finally mixed together.
MLLS	•	Minimum leakage in the extracted primary and ambient components; Primary and ambient components are uncorrelated;	•	Ambient component severely panned;	Spatial audio enhancement systems, and applications in which different rendering or playback techniques are employed on the extracted primary and ambient components.
MDLS	•	No distortion in the extracted primary and ambient components;	•	Severe interference and primary leakage in the extracted ambient component;	High-fidelity applications in which timbre is of high importance.
ALS	•	Performance adjustable;	•	Need to adjust the value of the adjustable factor;	For applications without explicit requirements.

Conclusions

Formulated the linear estimation framework for PAE.

Introduced two groups of performance measures.

- Extraction accuracy: ESR, DSR, ISR, LSR
- Spatial accuracy : ICC, ICTD, ICLD

Proposed MLLS, MDLS, ALS and compared them with PCA and LS in PAE.

□ Primary extraction

PCA=MDLS: minimum distortion

: a scaling factor difference

• LS=MLLS: minimum leakage & error

□ Ambient extraction

• MLLS (=PCA), LS, MDLS minimize the leakage, error, and distortion, respectively

□ ALS can achieve an adjustable performance for both primary and ambient components.

Different approaches are preferred in different spatial audio applications.