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Abstract—Digitally acquired high dynamic range (HDR) video
baseband signal can take 10 to 12 bits per color channel. It is
of economical importance to be able to reuse the legacy 8 or 10-
bit video codecs to efficiently compress the HDR video. Linear
or nonlinear mapping on the intensity can be applied to the
baseband signal to reduce the dynamic range before the signal
is sent to the codec, and we refer to this range reduction step as
the baseband quantization. We show analytically and verify using
test sequences that the existence of the baseband quantizer lowers
the coding efficiency. Experiment shows that as the baseband
quantizer strengthened by 1.6 bits, the drop of PSNR at high
bitrate is up to 1.60 dB. Our result suggests that, in order to
achieve high coding efficiency, video information reduction in
terms of quantization error should be incurred in the video codec
instead of on the baseband signal. (Version: 22:46 EST, Tuesday
8th March, 2016)

Index Terms—Quantization, High Dynamic Range (HDR),
Bitdepth, Transform Coding, HEVC/H.265

I. INTRODUCTION

The need for more vivid digital videos relies on two main
factors: more pixels, and better pixels [1], [2]. The latter is
more important than the former when nowadays the resolution
goes beyond the high definition. At the signal level, the need
for better pixels means adopting a wide color gamut (WCG),
and using high dynamic range (HDR) to represent all colors
with small quantization errors [3]–[7].

One efficient color coding standard that keeps the visibility
of quantization artifacts to a uniformly small level is the
perceptual quantizer (PQ) [8], [9], but it still takes 12 bits to
represent all luminance levels. It is of economical importance
to be able to reuse the legacy 8 or 10-bit video codecs such as
H.264/AVC [10] and H.265/HEVC [11] to efficiently compress
HDR videos. Linear or nonlinear mapping on the intensity can
be applied to the baseband signal to reduce the dynamic range
before the signal is sent to the codec, and we refer to this range
reduction step as the baseband quantization. Even if a codec
supports the dynamic range of a video, range reduction can
also be motivated by the needs of i) saving the running time
of the codec via computing numbers in a smaller range, ii)
handling the event of instantaneous bandwidth shortage as a
coding feature provided in VC-1 [12]–[14], or iii) removing
color precision that cannot be displayed by old screens.
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Hence, it is important to ask whether reducing bitdepth for
baseband signal is bad for coding efficiency measured in HDR.
Practitioners would say “yes”, but if one starts to tackle this
question formally, the answer is not immediately clear as the
change of the rate-distortion (RD) performance is non-trivial:
reducing the bitdepth for baseband signal while maintaining
the compression strength of the codec will lead to a smaller
size of encoded bitstream and a larger error measured in HDR.

We approach this problem by establishing the relationship
between the strength of the baseband quantizer and the coding
efficiency measured in (peak) signal-to-noise ratio [(P)SNR]. It
is beneficial to first model the problem of quantifying the error
in reconstructed images [15] as the problem of quantifying
the error in reconstructed residues. We then examine the error
of a single quantizer, and arrive at Lemma 2 that serving as
a primitive to facilitate the joint analysis on the effects of
baseband and codec quantizers with a linear transform.

The paper is organized as follows. In Section II, we simplify
the practical HDR video coding pipeline into a theoretically
tractable model before diving into the main derivation in Sec-
tion III-A. Simulation results are presented in Section III-B to
validate the derivation, and experimental results on videos are
presented in Section IV to confirm the theoretical explanation.

II. HDR VIDEO CODING PIPELINE MODELING

A. Quantifying Frame Error by Residue Error

Block diagram shown in Fig. 1 (a) models the video coding
pipeline with the effect of baseband signal quantization. The
input to the pipeline is the HDR frame at time index t, IHDR

t ,
with L pixels. The immediate input to the video codec It and
final reconstructed output ÎHDR

t are limited by the precision
of the finite bits container, so pixels take values on the set
q1Z = {nq1|n ∈ Z}. The immediate output pixels from the
codec take integer values due to the rounding operation at
the final stage of the codec, and the integer-valued vector
Ît−1 is used by intra- and inter-predictors collectively modeled
as pred(·). For simplicity, we define the quantizer function
Qi(x) = iQi (Qi(x)) before stating the following lemma:

Lemma 1 (frame error by residue error). The problem of
quantifying the error of predictively coded video frames can
be reduced approximately to quantifying the error of non-
predictively coded residues.

The sketch of the proof is described here, the complete proof
is left to Appendix A. We first establish the equivalence of the
two pipelines of Figs. 1 (a) and (b), where rHDR

t
def
= IHDR

t −
Q1(Jt). Then, the assumption that quantization step of Q1 is
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Fig. 1: (a) Block diagram for the video coding process with the effect of baseband signal quantization, and (b) equivalent diagram of (a).
Block R is the rounding to the nearest integer operation, round(x). Qi(x)

def
= round (x/qi) , iQi(x)

def
= qi · x, i = 1, 2 are quantization and

dequantization, respectively. All operations are applied separately to each entry of x when x is a vector.
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Fig. 2: Illustration for MSE calculation for the cases that (a) any
point (x, y) located within the 2a-by-2a square is quantized to
the reconstruction centriod (x0, y0) that may or may not located
within the square, and (b) a quantization in xy-plane is followed
by a transform, a quantization in uv-plane, inverse transform, and a
quantization in xy-plane.

much smaller comparing to the range of rHDR
t allows us to

remove the predictive branch of Fig. 1 (b), and to declare the
non-predictive coding branch of Fig. 1 (b) is approximately
equivalent to the original pipeline of Fig. 1 (a).

B. Quantization Error for a Hypercube

Assume that the reconstruction centroid for a squared
region of edge length 2a centered at (0, 0)1 as shown in
Fig. 2 (a) is located at (x0, y0) ∈ R2, not limited to be
within the region. We further assume that the point (X,Y )
is uniformly distributed over the square, namely, the joint
distribution fX,Y (x, y) =

1
4a2 , (x, y) ∈ [−a, a]2. The mean-

squared error (MSE) for the random vector (X,Y ) quantized
to/reconstructed at (x0, y0) is

MSE = E
[
‖(X,Y )− (x0, y0)‖2

]
=

∫ a

−a

∫ a

−a
‖(x, y)− (x0, y0)‖2 fX,Y (x, y) dx dy

=
1

4a2

∫ a

−a
dy

∫ a

−a
(x− x0)2 + (y − y0)2 dx

= d2 +
2

3
a2

(1)

1Throughout this paper, column vector [x1 x2 · · · xn]T may be denoted
as (x1, x2, · · · , xn) for the purpose of compact presentation.

where d2 = x20 + y20 is the squared Euclidean distance to the
geometric center of the region, (0, 0), and 2

3a
2 is related to

the strength of the quantizer. It is straight forward to extend
the result to the N -dimensional (N -d) case shown as follows:

Lemma 2 (quantization error). The mean-squared error for a
point that is uniformly distributed within an N -d hypercube
with an arbitrarily positioned reconstruction centroid and edge
length 2a is d2+ N

3 a
2, where d is the Euclidean distance from

the centroid to the geometric center of the hypercube.

This result agrees with two intuitive observations. First, as
the reconstruction centroid departs from the geometric center,
the quantization error increases. Second, as the quantizer
strength quantified by the edge length 2a increases, the error
increases.

III. EFFECT OF BASEBAND QUANTIZER
ON CODING EFFICIENCY

A. Error of Video Coding With Baseband Quantizer

Lemma 1 allows us in the following analysis to avoid
dealing with the predictive coding loop, and merely to follow
a scheme with transform coding and quantization blocks in
series. In addition, the residue signal that can be more easily
modeled in the probabilistic sense than the frame signal is
used as the input. Lemma 2 converts the derivation of the
reconstruction error of all possible points to that of just a few
reconstruction centriods.

We again use an example with two axes as shown in
Fig. 2 (b) to illustrate the idea behind, and all the derivations
can be easily expanded to the N -d general case.

Assume the input residual signal is a data point (x, y) on
the xy-plane with a joint probability distribution fXY (x, y).
Transform by an orthogonal matrix T can be considered
geometrically as a rotation of the coordinate system, namely,

(x, y)
T7→ (u, v), [u v]T = T [x y]T (2)

where we choose T = 1√
2

(
1 1
−1 1

)
. In this example, (1, 0) T7→

( 1√
2
,− 1√

2
) and (1, 1)

T7→ (
√
2, 0).

Quantization is equivalent to cutting the plane into squares,
as shown in Fig. 2 (b). We denote the point set containing
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all points belonging to a quantized region in xy-plane with
horizontal index i and vertical index j as Rxy[i, j], where
indices i, j ∈ ZM

def
= {−M, · · · , 0, · · · ,M}. Geometric

centers in of Rxy[i, j] are denoted as “•”, and those of Ruv[i, j]
are denoted as “◦”. In this example, Rxy[0, 1] centered at (0, 2)
and Rxy[0, 2] centered at (0, 4) are both quantized to Ruv[1, 1]
by Q2, and finally quantized to Rxy[0, 1] by Q1.

The overall error D def
= E[‖(x, y) − (x̂, ŷ)‖2] due to video

coding with baseband quantizer can be calculated by averaging
MSE over the (2M + 1)2 regions indexed by (i, j), namely,

D = E
[
E
[
‖(x, y)− (x̂, ŷ)‖2|Rxy[I, J ]

]]
(3)

where the probability mass function is pIJ(i, j) =∫
x,y∈Rxy[i,j]

fXY (x, y) dxdy. For each region Rxy[i, j], the
calculation of error is simplified by Lemma 2 2, namely,

E
[
‖(x, y)− (x̂, ŷ)‖2|Rxy[i, j]

]
=

2

3

(q1
2

)2
+ d2{Rxy[i, j]} (4)

where d{Rxy[i, j]} is the Euclidean distance from the recon-
struction centroid to the geometric center of Rxy[i, j]. The
geometric center is by definition m = (iq1, jq1). Passing m
through the whole pipeline shown in Fig. 1 (b) excluding the
predictive branch (aka the main branch), one can obtain the
reconstruction centroid:

m̂ = Q1

(
T−1

{
Q2

[
TQ1

(
[iq1 jq1]

T
)]} )

(5a)

= q1 round
[
q2
q1

T−1 round
(
q1
q2

T

[
i
j

])]
. (5b)

Substituting Eqn. (4) into Eqn. (3), we obtain:

D =
2

3

(q1
2

)2
+ E

[
d2{Rxy[I, J ]}

]
. (6)

Due to the space limitation, we leave the detailed derivation
for E

[
d2{Rxy[I, J ]}

]
to Appendix B. We present the final

result of the derivation for the overall error D for scenarios
that the baseband quantizer is finer than the codec quantizer
(i.e., q1 < q2) as follows:

D =


N

12

(
q22 + 2q21

)
, q1 ≤ q2

2 , (7)

N

12

[
q22 + (1 + γ1)q

2
1 + 2γ12q2q1

]
, q1 >

q2
2 , (8)

where N is the length of input signal vectors, and estimates
of γ1 and γ12 are displayed in Fig. 3 (a).

It can be proved that, using the scheme of the main branch of
Fig. 1 (b), the bitrate is solely controlled by the codec quantizer
Q2. Hence, fixing q2 and thus the bitrate, any increase in q1
leads to a decrease in SNR and therefore in coding efficiency.
In comparison, a change in q2, which changes bitrate and SNR
simultaneously, has no impact on the coding efficiency.3

2Note that the uniform distribution assumption of Lemma 2 is valid within
region Rxy [i, j] for the high bitrate coding scenario that we are interested in.

3Recall that the comparison of coding efficiency between two codecs is via
the comparison of their empirical RD curves. A change in q2 does lead to a
move of the operation point in the bitrate-SNR plane, but both the starting
and the ending locations reside on the same RD curve.
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Fig. 3: (a) Estimated γ1 and γ12, and (b) SNR LOSS as a function
of q2/q1 or α.

Given the scenarios of interest that q1 < q2, we define q1 =
q2
α , α ≥ 1. The SNR loss with reference to an almost perfectly
fine baseband quantizer, i.e., q1 → 0, can be easily derived:

SNR LOSS =


10 log10

(
1 +

2

α2

)
, α ≥ 2, (9)

10 log10

(
1 +

1 + γ1
α2

+
2γ12
α

)
, α < 2. (10)

The resulting SNR loss is shown in Fig. 3 (b).
To conclude, under the assumption of q1 < q2, i) the best

case is q1 � q2 or α→∞, and error is solely due to the codec
quantizer and there is no reduction in SNR; and ii) the worst
case is reached when q1 ↗ q2 or α↘ 1, and a maximum of
3 dB SNR drop is incurred.

B. Simulation Results

We verify the theoretical result by simulating the change
of SNR as a function of q1

q2
. Specifically, assume a length-L

Gaussian vector (X1, X2, · · · , XL), with a fixed correlation
of neighboring coordinates, i.e., corr(Xl, Xl+1) = ρ, for
l = 1, · · · , L− 1. In image/video coding scenarios, L usually
takes value in {42, 82, 162}. In our simulation, realizations of
random vectors are obtained by choosing disjoint segments
from a realization of an AR(1) process.

We present two simulation cases, (a) for small blocks
with low neighborhood correlation (L = 42, ρ = 0.4,
σ = std(Xl) = 1.0911), and case (b) for large blocks with high
correlation (L = 162, ρ = 0.9, σ = 2.2942). In both cases,
we check the performance difference between the scenarios
when the baseband quantizer Q1 is negligible, i.e., q1 → 0,
and not. When Q1 is not negligible, we set the quantizer to be
reasonably coarse with respect to the spread of Xl, namely,
q1 = σ

10 , and the corresponding q2 for each bitrate value on
RD curve from left to right are q1 × {8, 4, 2, 1}.
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q1/q2
simulation theory [Eqn. (9)]case (a) case (b)

1/8 −0.13 −0.16 −0.13
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1/1 −3.00 −2.95 −2.98
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Fig. 4: RD curves of simulated video data revealing the performance gap between the scenarios that the baseband quantizer Q1 is negligible
(solid blue) and not negligible (dotted red). Case (a): small blocks with low neighborhood correlation (L = 42, ρ = 0.4), and case (b):
large blocks with high correlation (L = 162, ρ = 0.9). (c) Simulated SNR drops for different q1/q2 ratios agree with the theoretical results
[Eqn. (9)].
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Fig. 5: RD curves for inter-coded videos with different strength levels of the baseband quantizer Q1: (a) Market and (b) Typewriter. The
PSNR gaps at high bitrate are 0.35 and 1.60 dB. (c) Largest PSNR gaps at both high and low bitrates for intra- and inter-coded videos.

Simulation results are shown in Fig. 4. The solid red curves
show the RD performances when the coarse quantizer Q1 is
used; whereas the dotted blue curves show the performances
when Q1 is negligible, which is to approximate the scenario
that Q1 is absent. The RD performance drop with respect
to the solid blue curves is consistent with the theoretical
estimates shown in the table of Fig. 4 (c). As expected from
our theoretical result, the above results are independent of
block size L and neighborhood correlation ρ.

IV. EXPERIMENTAL RESULTS ON VIDEOS

We now verify the theoretical results using standard test
sequences. Test sequences stored in the 16-bit TIFF container
are regarded as the reference/baseband signal. They were first
linearly mapped to different dynamic ranges to mimic the
effect of the baseband quantizer, the resulting videos were then
encoded using HM 14.0 [16], and finally the quality in terms
of PSNR and SSIM was measured in the 16-bit precision.

Detailed simulation conditions are as follows. The luma
component of three test sequences BalloonFestival, Market,
and Typewriter in BT.2020 color space [17] of size 1920×1080
are used. The operational bitdepth in the video codec is 10.
Each video is encoded using two structures: the all I-frames
structure for 17 frames (aka intra-coding), and the IBBB · · ·
structure for 64 frames (aka inter-coding). The codec quantizer
takes 6 equally spaced quantization parameters to draw one
piece of RD curve. Videos are baseband-quantized to the
dynamic ranges [0, 300], [0, 500], [0, 700], and [0, 900] with
effective bitdepth 8.2, 9.0, 9.5, and 9.8 bits, respectively.

The experimental results from all sequences with both
PSNR and SSIM measure reveal that the stronger the baseband

quantizer is, the more penalty in coding efficiency is incurred.
Due to the space limitation, we show the RD performance
measured in PSNR for Market and Typewriter that are inter-
coded in Figs. 5 (a) and (b). It can be read from the figures that
the PSNR gaps between the green curve and the red curve at
a high bitrate (the largest rate that 4 curves simultaneously
cover) is 0.35 dB for Market and 1.60 dB for Typewriter.
Table of Figs. 5 (c) reports the largest PSNR gaps at both
high and low bitrates for intra- and inter-coded videos. It
is observed that as the baseband quantizer strengthened by
1.6 (= 9.8 − 8.2) bits, the drop of PSNR at a high bitrate is
up to nearly 1.60 dB.

V. CONCLUSION AND DISCUSSION

In this work, we analyzed the video coding pipeline by
explicitly considering the existence of the baseband quan-
tizer. We arrived at the conclusion via theoretical proof and
experiment that the baseband quantizer lowers the coding
efficiency, whereas the codec quantizer does not affect the
coding efficiency. Hence, video information reduction in terms
of quantization error should be incurred in the video codec
instead of on the baseband signal.

In a more practical scenario, nonlinear mapping is more
often used than linear mapping for baseband signal range
reduction when the bitdepth is insufficient. Although we have
proved that quantizing the baseband signal uniformly leads to a
penalty in coding efficiency measured in HDR, it is interesting
to see whether quantizing the baseband signal non-uniformly
can also lead to a penalty in coding efficiency.
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APPENDIX A
PROOF OF LEMMA 1

Proof. For simplicity, define the quantizer function Qi(x) =
iQi (Qi(x)). Denote the predicted frame pred(Ît−1) as Jt, and
it can be decomposed into the residue vector with the smallest
absolute value for each coordinate, and a vector of integer
multiples of q1, namely,

Jt = Jt%q1 +Q1(Jt) (11)

where % is the modulo operation. Following Fig. 1 (a), the
error due to the joint effect of baseband quantization and video
compression ÎHDR

t − IHDR
t can be written as:

Q1

(
T−1Q2

{
T
[
Q1(I

HDR
t )− Jt

]}
+ Jt

)
− IHDR

t . (12)

Substituting Eqn. (11) into (12) and moving Q1(Jt) ∈ (q1Z)L
into and out of the quantizer with step size q1, we obtain:

Q1

(
T−1Q2

{
T
[
Q1(I

HDR
t −Q1(Jt))− Jt%q1

]}
+ Jt%q1

)
−
[
IHDR
t −Q1(Jt)

]
. (13)

Here, IHDR
t −Q1(Jt) can be considered as an intra- or inter-

prediction residue, and we define it as rHDR
t . In terms of

quantifying error for reconstructed HDR frames, Fig. 1 (a)
is therefore equivalent to Fig. 1 (b) visualized from Eqn. (13),
namely,

ÎHDR
t − IHDR

t = r̂HDR
t − rHDR

t . (14)

Assuming the quantization step of Q1 is much smaller compar-
ing to the range of rHDR

t , the predictive branch Jt%q1 can be
removed to obtain a slightly perturbed residue r̃HDR

t . Therefore,
the error of non-predictively coded residues r̃HDR

t − rHDR
t ≈

ÎHDR
t − IHDR

t .

APPENDIX B
DERIVATION FOR E

[
d2{Rxy[I, J ]}

]
Define a residue function g(x) = round(x)−x, where g(x) ∈
(− 1

2 ,
1
2 ] for any x > 0, and [− 1

2 ,
1
2 ) for any x < 0. Hence,

Eqn. (5b) can be simplified to the sum of three terms:

m̂ = q1

[
i
j

]
+ q2 T−1g

(
q1
q2

T

[
i
j

])
+ q1 g

{
q2
q1

T−1g

(
q1
q2

T

[
i
j

])}
. (15)

Denote the nth row and column of matrix T by vTn and un,
respectively. Define p = (i, j), Yn = g

(
q1
q2

vTnp
)

, and Wn =

g
(
q2
q1

uTnY
)

. The squared distance is

d2{Rxy[I, J ]} = ‖m− m̂‖2 (16a)

=

∥∥∥∥q2 T−1 [Y1Y2
]
+ q1

[
W1

W2

]∥∥∥∥2 (16b)

= q22 ‖Y‖
2
+ q21 ‖W‖

2
+ 2q2q1Y

TTW.
(16c)

Since vector p ∈ Z2
M , and the term q1

q2
vTnp can take values on

a non-degenerated subset of R, except in very rare cases with
a certain combination of q1, q2,vn the term takes value on a
subset of Z. For the non-degenerated case, it can be proved
that Yn is approximately uniformly distributed on (− 1

2 ,
1
2 ).

Therefore, E[‖Y‖2] = 2
12 .

When q1 <
q2
2 , the range of every coordinate of q2

q1
Y is

larger than (−1, 1). It can be proved that, Wn is uniformly
distributed on (− 1

2 ,
1
2 ), and W and Y are uncorrelated. There-

fore, E[‖W‖2] = 2
12 , and E[YTTW] = trace{TE[WYT ]}

= 0.
In the other case, as q1 increases, Wn becomes more

depend on Y. Statistics γ1 = 12
N E[‖W‖2] and γ12 =

12
N E[YTTW] = 12

N trace{TE[WYT ]} are empirically mea-
sured, and results are shown in Fig. 3 (a).

Therefore,

E
[
d2{Rxy[I, J ]}

]
={(

q22 + q21
)
/ 6, 0 < q1 ≤ q2

2 ,(
q22 + γ1q

2
1 + 2γ12q2q1

)
/ 6, q2

2 < q1 ≤ q2.
(17)

And it is not difficult to generalize the above result to the N -d
scenario as follows:

E
[
d2{Rxy[I1, · · · , IN ]}

]
={

N
(
q22 + q21

)
/ 12, 0 < q1 ≤ q2

2 ,

N
(
q22 + γ1q

2
1 + 2γ12q2q1

)
/ 12, q2

2 < q1 ≤ q2.
(18)


