# **CLASSIFICATION OF THYROID NODULES IN ULTRASOUND IMAGES USING DEEP MODEL BASED TRANSFER LEARNING AND HYBRID FEATURES**

# *Tianjiao Liu<sup>1</sup>, Shuaining Xie<sup>1</sup>, Jing Yu<sup>2</sup>, Lijuan Niu<sup>3</sup>, Weidong Sun<sup>1</sup>*

<sup>1</sup>Dept. of Electronic Engineering, Tsinghua University, Beijing 100084, China <sup>2</sup>Colg. of Computer Science & Technology, Beijing Univ. of Technology, Beijing 100124, China <sup>3</sup>Cancer Hospital of Chinese Academy of Medical Sciences, Beijing 100021, China

# 

Ultrasonography has become the most widely used modality for detecting and diagnosing thyroid cancer. Computer aided diagnosis can give diagnosis suggestions, and increase the diagnosis accuracy when lack of experts.

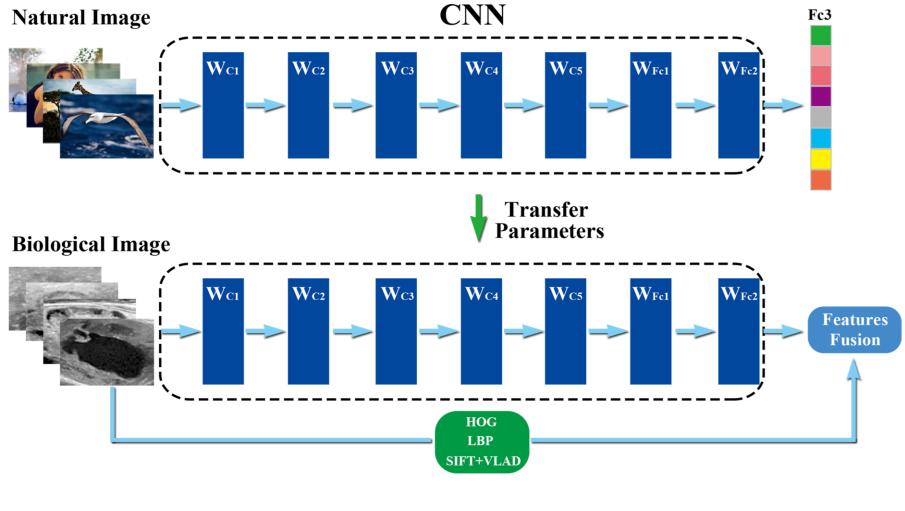
#### The problem

- Traditional hand-crafted features perform quite unsatisfactorily on the classification task for its intrinsic simplicity and locality.
- CNNs can provide high-level features, but large datasets are usually unavailable in medical field.

#### The proposed solution

To capture appropriate features and handle the small sample problem, we propose a feature extraction method based on CNNs and transfer learning.

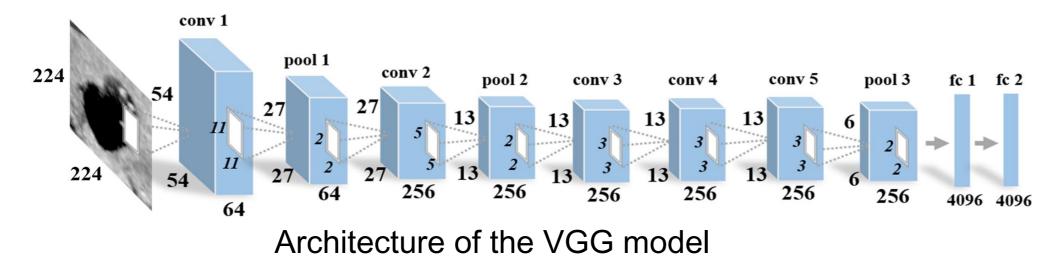
- We combine hand-crafted features with semantic deep features extracted from the pre-trained CNN model.
- A positive-sample-first majority voting and a featureselected based strategy are employed for the hybrid classification.



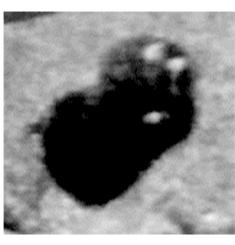
Flowchart of our proposed method

# **PRE-TRAINED MODEL FOR TRANSFER LEARNING**

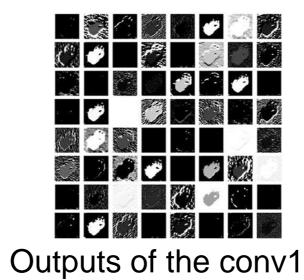
We employ the VGG-F model trained with ImageNet database. VGG-F model is consist of 5 convolutional and 2 fully-connected layers. The fc layers have 4096-dimentional outputs that can be used as feature descriptor for classification.

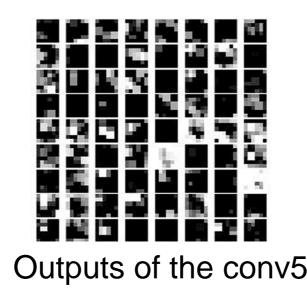


A tumor image response to a certain convolution layer: lower layer extracts edge, directional and intensity features, while in high layer, various features compositely emerge.



Input image





#### STRATEGY FEATURE FL

We integrated HOG, SIFT and LBP features with the high-level features extracted from CNNs. Two kinds of feature fusion strategies are used in our proposed method.

#### Feature-selected strategy

The feature selection standard based on sorting the differences of benign samples and malignant samples.

$$diff_{k} = \left| \frac{1}{N_{MB}} \sum_{i=1}^{N_{MB}} v_{ik} - \frac{1}{N_{MM}} \sum_{i=1}^{N_{MM}} v_{ik} \right| (k = 1, \dots, N)$$

Where,  $N_{MR}$  and  $N_{MM}$  are the number of benign and malignant nodules in the training set,  $v_{ik}$  is the *k*th dimensional feature of the *i*th image. The top 1000 features with the largest  $diff_k$  will be chosen.

### Positive-sample-first majority voting strategy

For a feature extraction method k, a classifier  $h_k$  can be trained on the dataset. The final predicted classification result for sample x is expressed as,

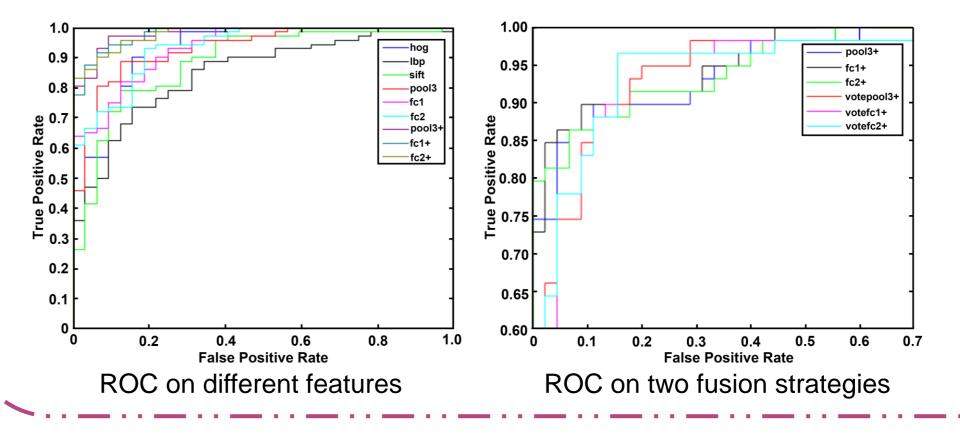
$$h(x) = mode(h_1)$$

Once the same votes of benign and malignance occurs, we regard the results as malignance.

 $(x),...,h_{D}(x))$ 

are used in our experiments and all of the images are demarcated by doctors. The classification was performed using SVM classifier with 10-fold cross validation.

Comparison results of different features Accuracy Sensitivity Specifi Features HOG 0.829 0.699 0.906 LBP 0.780 0.562 0.909 SIFT+VLAD 0.824 0.726 0.882 0.856 0.905 0.773 Pool3 0.853 0.774 0.911 Fc1 Fc2 0.860 0.788 0.911 0.945 Pool3+ 0.931 0.908 0.923 0.895 0.939 Fc1+ 0.920 0.887 0.940 Fc2+ Vote-Pool3+ 0.918 0.902 0.928 Vote-Fc1+ 0.913 0.885 0.929 0.917 Vote-Fc2+ 0.888 0.934



thyroid nodules into benign and malignant.

- The pre-trained CNN model is transferred to ultrasound domain to gain semantic features.
- We considered both low-level and high-level features, and proposed two feature fusion strategies for classification.
- Hybrid methods outperformed both the pre-trained CNN model and the traditional singletype feature method.



RESULTS

1037 thyroid nodule ultrasound images, including 651 benign and 386 malignant images,

|      |       | _ |
|------|-------|---|
| city | AUC   |   |
|      | 0.837 |   |
|      | 0.793 |   |
|      | 0.841 |   |
|      | 0.917 | - |
|      | 0.940 |   |
|      | 0.946 | _ |
|      | 0.977 |   |
|      | 0.982 |   |
|      | 0.976 |   |
|      | 0.963 |   |
|      | 0.959 |   |
|      | 0.956 |   |
|      |       |   |

- Pool3', 'Fc1' and 'Fc2' denote the features extracted from layer pool3, fc1 and fc2; '+' and 'Vote-' denotes feature selection and voting strategies.
- Features generated by CNNs overwhelm low-level features, thus it is feasible to transfer CNN features to ultrasound images domain.
- Two feature fusion methods can generally improve the accuracy by 7%-8% and 10%-14%, and increase sensitivity by11-20%, compared with the deep features and the low-level features.
- Feature-selected method aims to improve the TP rate when FP rate stays low, while voting makes effort on ensuring the classification accuracy of positive samples.

CONCLUSION

In this paper, a feature extraction method for ultrasound images is presented to classify the