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Finger Vein Biometrics

* Authentication system that matches the
vascular patterns in an individual's finger.

* Blood vessel patterns are unique to each
individual, as are other biometric data such as
fingerprints or the patterns of the iris.
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How it works
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Importance

Source: http://slate.me/1Bmmay5
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Finger vein Spoofing - Background

Spoofing a commercial finger vein recognition device

- =
' The spoofing finger is enrolled in the system by three takes
T —— -

P W { 059/247

Source: http://bit.ly/1QKJT4c



How to counter spoof ?

* Look for the cues and artefacts that
differentiate valid from the spoof.

* Our Hypothesis:
— Cues that differ light reflection properties.
— micro-level artefacts that differ in quality.

* How to identify these cues and artefacts?
— Thanks to texture based methods.



Texture methods
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Texture methods

Our proposal
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DI\/ID Facial counterSpoofing
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How DMD works?

| Al A2| A-2| A1

Find the unknown matrix A
Solve for eigenvalues and vectors of A
Generally using Arnoldi approximations.
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How about images ?

* Our Proposal — Windowed DMD
* Research questions:

— If DMD can capture principle movements videos
then would W-DMD capture texture gradients
from images?

— What would be the effect of texture gradients on
classification performance ?

— How effective is the W-DMD compared to
plethora of existing descriptors ?
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“Our proposal — Windowed DMD
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W-DMD on full finger vein images

Spoof

W-DMD (C1)

W-DMD (C2)
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Spoof

W-DMD (C1)

W-DMD (C2)

14



¥ SURREY

=~ (Classification framework
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Texture 80
— Texture
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Real

Real and spoof
images

SVM - Classifier
Texture feature dimensions

Texture Methods “ Minimum Intersection Kernel

1x531 1x531 -
DWT 1x36 1x70 k(z,y) = Z min(z;. y;)
DCT 1x400 1x400 i1
HoG 1x81 1x81
Entropy 1x138 1x270
STD 1x138 1x270
Range 1x138 1x270
W-DMD 1x3330 1x6550

W-DMD+LBP 1x531 1x531 o
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Dataset

IDIAP’s Fingervein Spoofing Dataset
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Evaluation

* Equal Error rate based on F-ratio

e Larger F-ratio => higher separability.

* Measured even when no error is observed.
* F-ratio=[ uC - pul/ oC+ ol]

* Where Cis real and | is spoof and p is mean and o is
standard deviation.

Norman Poh and Samy Bengio. How do correlation and variance of base-experts affect fusion in biometric authentication
tasks? Signal Processing, IEEE Transactions on, 53(11):4384-4396, 2005.
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Experimental Hypotheses

* Which DMD components?
 Comparisons with other methods?
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: Selection of the W-DMD
component

= W-DMD (C1) = W-DMD (C2)
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F-ratio
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Conclusions

e Limitations — Size of the feature vector.

* Applied W-DMD on finger vein images for
valid and print attacks from 110 clients (240
(training) + 240 (development) + 400(testing)).

* Significance of the W-DMD + SVM pipleline -
effectively detect the spoof samples.

* The results were promising in tackling the
print attack challenge.
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Thank you

Any Questions ?

Paper ID: 63
{s.tirunagari, n.poh}@surrey.ac.uk
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