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Outline 

•  Motivation 
–  Training-free methods 
–  Comparative Reasoning 
–  Related work 

•  Approach 
–  Winner Take All (WTA) Hash 
–  Clustering based on Random Walks 
 

•  Some experimental results 
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Motivation 

•  Goals: 
–  Segment images where no. of classes unknown 

–  Eliminate training data (may not be available) 
–  Fast pre-processing step for classification 

•  Segmentation is similarity search 

•  Comparative Reasoning is rank correlation 
using machine learning concept of “hashing” 
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Hashing 

•  Used to speed up the searching process 

•  A ‘hash function’ relates the data values to 
keys or ‘hash codes’ 

•  Hash table is shortened representation of data 
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Hashing 

•  Similar data points have the same (or close 
by) hash keys or “hash codes” 

•  Properties of hash functions 
–  Always returns a number for an object 
–  Two equal objects will always have the same number 
–  Two unequal objects may not always have different 

numbers 
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Hashing for Segmentation 

•  Each pixel is described by some feature 
vectors (eg. Color) 

•  Hashing is used to cluster them into groups 
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Segmentation and Randomized 
Hashing 

•  Random hashing i.e using a hash code to 
indicate the region in which a feature vector 
lies after splitting the space using a set of 
randomly chosen splitting planes 

C. J. Taylor and A. Cowley, “Fast segmentation via randomized hashing.,” in BMVC, pp. 1–11, 2009. 
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Figure 1: This figure depicts a simplified 2D version of the randomized hashing scheme.
Figure (a) depicts a 2D feature space fractured into regions by a set of randomly chosen
splitting planes. Each region is associated with a hash code indicating where it falls with
respect to the splitting planes. The set of all hash codes can be associated with the vertices
of a hypercube as shown in Figure (b) here the shading of the nodes indicates how many
feature vectors are hashed to that code. The segmentation scheme proceeds by identifying
local maxima in this hash code space.

this, the scheme employs a series of randomly chosen splitting planes. Figure 1 shows a
simplified view of this procedure in two dimensions. Here the random splitting planes are
used to hash the feature vectors into a set of disjoint cells based on their location.

The notion of randomized hashing has been employed before most notably by Indyk
and Motwani in the context of Locality Sensitive Hashing [8]. These authors used a similar
approach to hash a set of vectors into a set of discrete bins in order to accelerate the search for
nearest neighbors. Their approach leveraged the fact that this randomized hashing procedure
tends to preserves locality so points that are near to each other in the feature space are hashed
to the same bin with high probability.

The proposed segmentation scheme leverages the same phenomenon for a different pur-
pose - namely to cluster the feature vectors into groups. Returning to Figure 1 we note that
the n spitting planes fracture the feature space into a set of 2n disjoint convex cells each of
which corresponds to an n-bit hash code. More specifically, each vector in the feature space
v

j

is assigned an n-bit hash code where the ith bit in the code, bi j, is derived from the ith
splitting plane as follows bi j = (v

j

· u

i

) > s

i

where u

i

denotes the normal associated with
the ith splitting plane and si denotes the corresponding splitting value. Neighboring cells in
the feature space differ by a single bit so the Hamming distance between the codes provides
some indication of the distance between vectors in the feature space. More generally we can
construct a correspondence between the set of all possible hash codes and the vertices of an
n-dimensional hypercube. The topology of the hypercube reflects the structure of the feature
space since neighboring cells in feature space will correspond to neighboring vertices in the
hypercube.

For each of the hash codes the clustering procedure records how many feature vectors
are mapped to that code. We expect that clusters in feature space will induce population
maxima in the code space. That is, if we consider the hypercube as a graph we would expect
to observe that some of the hash codes have a greater population than their neighbors. This



Winner Take All (WTA) Hash 

•  A way to convert feature vectors into compact 
binary hash codes 

•  Absolute value of feature does not matter, 
only the ordering of values matters 

•  Rank correlation preserved 
–  Stability 

•  Distance between hashes approximates rank 
correlation  

J. Yagnik, D. Strelow, D. A. Ross, and R.s. Lin, “The power of comparative reasoning,” in ICCV 2011, 
 pp. 2431–2438, IEEE, 2011.  
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Calculating WTA Hash 

•  Consider 3 feature vectors 
    Step 1: Create random permutations 

10 
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Calculating WTA Hash 

 
•  Step 2: Choose first K entries. Let K=3 
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Calculating WTA Hash 

 
•  Step 3: Pick the index of the max. entry. This is 

the hash code ‘h’ of that feature vector 

12 

13 4 2 11 5 3

3 1 5 2 6 4

2 13 5 4 3 11 44 1 15 90 6 5

7 15 12 1 33 5

12 5 3 10 4 2
feature 1 feature 2 feature 3

1 90 44 5 15 6

3 12 4 5 2 10 Permute with θ
 

2 13 5 4 3 11 44 1 15 90 6 53 12 4 5 2 10 Choose first K entries

2 13 5 4 3 11 44 1 15 90 6 53 12 4 5 2 10
Hash code is index 

of top entry out of the K

h=2 h=2 h=1

Permutation vector θ

Feature 1 and Feature 2 are similar

Step 1

Step 2

Step 3



Calculating WTA Hash 

Notice that Feature 2 is just Feature 1 perturbed 
by one, but Feature 3 is very different 
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Random Walks 

•  Understanding proximity in graphs 
•  Useful in propagation in graphs – creates 

probability maps 

•  Similar to electrical network with voltages and 
resistances 

•  It is supervised.  
User must specify 
 seeds 

14 

2

2
2

1

1
1

1

+1V

-1V

-0.16V

0.05V

0.16V



Our Approach 
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Our Approach 

1.  Similarity Search using WTA Hash 
2.  Transformation to graph with nodes and 

edges 
3.  Probability map using Random Walks 

–  Automatic seed selection 

4.  Clustering 

Input image Segmented
    output

Random 
projections

WTA 
hash

     Transform to
      graph with

       (Nodes, Edges)

Auto. seed
selection      Stop?

Probabilities
 from 

RW algo.

Yes

No

Similarity Search RW Algorithm

Block I Block II Block III

14 

Our Approach 

1.  Similarity Search using WTA Hash 
2.  Transformation to graph with nodes and 

edges 
3.  Probability map using Random Walks 

–  Automatic seed selection 

4.  Clustering 

Input image Segmented
    output

Random 
projections

WTA 
hash

     Transform to
      graph with

       (Nodes, Edges)

Auto. seed
selection      Stop?

Probabilities
 from 

RW algo.

Yes

No

Similarity Search RW Algorithm

Block I Block II Block III

14 



Block I: Similarity Search 
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WTA hash 

 
•   Image Dimensions: P x Q x d 
•  Project onto R randomly chosen hyperplanes 

–  Each point in image has R feature vectors 
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WTA hash 

 
•   Run WTA hash N times.  
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Block II: Create Graph 
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 Create Graph  

•  Run WTA hash N times ! each point has N 
hash codes 

•  Image transformed into lattice  
•  Calculate edge weight between nodes i and j 
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!i,j = exp(��⌫i,j)

where:

⌫i,j =
dH(i, j)

�
dH(i, j) = Avg. Hamm. distance over all N hash codes of i and j
� = Scaling factor
� = Weight parameter for the RW algorithm



Block III: RW Algorithm 
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Seed Selection 

•  Needs initial seeds to be defined 
•  Unsupervised draws using Dirichlet processes 
•  DP(G0,α) 

–  Go is base distribution 
–  α is discovery parameter 

•  Larger α leads to discovery of more classes  
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Seed Selection 

•  Probability that a new seed belongs to a new 
class is proportional to α 

•  Probability for the ith sample with class label yi   
–  Result by Blackwell and MacQueen, 1973 
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p(yi = c|y�i,↵) =
n�i
c + ↵

C
tot

n� 1 + ↵
where:

C
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y
i
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tot

}
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= {y
j

|j 6= i}
n�i
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Seed Selection 

•  Unsupervised, hence Ctot is infinite. Hence, 
     

•  “Clustering effect” or “rich gets richer” 

•  Probability that a new class is discovered: 
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Class is non-empty 

Class is empty or new 
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Random Walks 

•  Use the RW algorithm to generate probability 
maps in each iteration 

•  Entropy calculated with probability maps 
•  Entropy-based stopping criteria 

–  Cluster purity ", Avg. image entropy # 

25 



Experimental Results 
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Value of Accuracy(%)

R BSDSubset TexBTF TexColor TexGeo

10 91.57 ± 4.47 97.84 ± 1.63 94.00 ± 2.81 95.60 ± 2.39

20 91.58 ± 4.31 98.25 ± 1.15 94.55 ± 2.04 95.82 ± 1.71

40 91.42 ± 4.57 98.36 ± 0.78 94.09 ± 2.57 95.14 ± 2.97

Table I: Comparison of segmentation performance on various datasets while
varying the number of pairs of points R used for random projection. BSDSub-
set refers to 200 training images in the BSDS500 dataset. TexBTF contains
10 images which are a mosaic of bi-directional function textures. TexColor
contains 20 mosaics of various color images. TexGeo contains 10 mosaics
of satellite images. Smaller R implies smaller computation time and as seen
here, cluster purity is not affected adversely.

Value of GCE

R BSDSubset TexBTF TexColor TexGeo

10 0.179 0.063 0.159 0.102

20 0.180 0.065 0.159 0.129

40 0.186 0.061 0.156 0.134

Table II: GCE scores for varying values of R over all test datasets. GCE
scores for the BSDSubset of 200 images can be compared with those of other
methods (Table III) and with the randomized hashing method in [6] tested on
the same dataset.

H&E teratoma images [11], [12] are analyzed by
histopathologists to assess the tissue composition of the ter-
atoma. This visual analysis is extremely time consuming and
resource intensive. The multiple types of tissues within the
teratoma do not show regular relationships between each other,
making automated analysis challenging. It is to be noted that
the ground truth provided by the histopathology expert does
not always include each and every tissue component, but only
the ones deemed important enough. Examples of segmentation
outputs of histology images are as seen in Fig. 3. The low
GCE scores indicate accurate segmentation and our method
has been able to identify similar tissue regions. The lattice
connectivity for histology images was chosen to be radial with
r = 2. Large images were downsampled by a factor of 4 to
speed up computation. This segmentation result can be used
as a preprocessing step for robust tissue classification on H&E
images, as in [11], [12].

For natural and texture images, we use an 8-connected
lattice to form the graph. Downsampling is not required for
these images. Some example results are shown in Fig. 4. We
also tested performance for varying R on the training set
from the BSDS500 dataset [10] containing 200 images and
3 texture datasets provided by UTIA-PR [13]. These texture
datasets contain images which are computer-generated mosaics
filled with randomly selected textures taken from the UTIA-
PR dataset. Table I gives the values for cluster purity averaged
over the dataset. GCE scores for the test datasets are given in
Table II. These results are encouraging since they imply that
our segmentations and the ground truth show a high match.

Finally, we reproduce the table from [14] containing GCE
scores for several state of the art methods tested on the same
200 BSDS training images used by us. The performance of
our method on this same dataset can be compared using GCE
scores for [6] which also uses randomized hashing.

Figure 3: Top row: Histology images with the respective sets of seeds used
by RW marked on the images. Middle row: ground truth images provided by
experts. Bottom row: segmented outputs using our method.

Figure 4: Results of our method demonstrated on some natural images from
BSDS500 and a texture image from the UTIA-PR dataset (last). Using the
available ground truth, the cluster purity for the images from left to right are
96.61% , 96.49%, 88.92% and 98.29% respectively.

V. CONCLUSION

The segmentation performance of our unsupervised method
on various datasets is presented in Table I. It demonstrates that
smaller R also led to high cluster purity which meant savings
in computation time. GCE score was used to compare results
on the BSDSubset with other methods and it was found that
our method performed better than state of the art methods (see
BSDSubset column in Table II and Table III) and Taylor’s
randomized hashing method[6]. Additionally, we found that
our method gives encouraging results on histology images of
teratomas.

Method GCE

Human Segmentation 0.080

RAD[14] 0.205

seed[15] 0.209

Learned Affinity[16] 0.214

Mean Shift[17] 0.260

Normalized Cuts[18] 0.336

Table III: Comparison of segmentation performance for BSDSubset using
Global Consistency Error scores for state of the art methods. Reproduced
from [14].

Value of Accuracy(%)

R BSDSubset TexBTF TexColor TexGeo

10 91.57 ± 4.47 97.84 ± 1.63 94.00 ± 2.81 95.60 ± 2.39

20 91.58 ± 4.31 98.25 ± 1.15 94.55 ± 2.04 95.82 ± 1.71

40 91.42 ± 4.57 98.36 ± 0.78 94.09 ± 2.57 95.14 ± 2.97

Table I: Comparison of segmentation performance on various datasets while
varying the number of pairs of points R used for random projection. BSDSub-
set refers to 200 training images in the BSDS500 dataset. TexBTF contains
10 images which are a mosaic of bi-directional function textures. TexColor
contains 20 mosaics of various color images. TexGeo contains 10 mosaics
of satellite images. Smaller R implies smaller computation time and as seen
here, cluster purity is not affected adversely.

Value of GCE

R BSDSubset TexBTF TexColor TexGeo

10 0.179 0.063 0.159 0.102

20 0.180 0.065 0.159 0.129

40 0.186 0.061 0.156 0.134

Table II: GCE scores for varying values of R over all test datasets. GCE
scores for the BSDSubset of 200 images can be compared with those of other
methods (Table III) and with the randomized hashing method in [6] tested on
the same dataset.

H&E teratoma images [11], [12] are analyzed by
histopathologists to assess the tissue composition of the ter-
atoma. This visual analysis is extremely time consuming and
resource intensive. The multiple types of tissues within the
teratoma do not show regular relationships between each other,
making automated analysis challenging. It is to be noted that
the ground truth provided by the histopathology expert does
not always include each and every tissue component, but only
the ones deemed important enough. Examples of segmentation
outputs of histology images are as seen in Fig. 3. The low
GCE scores indicate accurate segmentation and our method
has been able to identify similar tissue regions. The lattice
connectivity for histology images was chosen to be radial with
r = 2. Large images were downsampled by a factor of 4 to
speed up computation. This segmentation result can be used
as a preprocessing step for robust tissue classification on H&E
images, as in [11], [12].

For natural and texture images, we use an 8-connected
lattice to form the graph. Downsampling is not required for
these images. Some example results are shown in Fig. 4. We
also tested performance for varying R on the training set
from the BSDS500 dataset [10] containing 200 images and
3 texture datasets provided by UTIA-PR [13]. These texture
datasets contain images which are computer-generated mosaics
filled with randomly selected textures taken from the UTIA-
PR dataset. Table I gives the values for cluster purity averaged
over the dataset. GCE scores for the test datasets are given in
Table II. These results are encouraging since they imply that
our segmentations and the ground truth show a high match.

Finally, we reproduce the table from [14] containing GCE
scores for several state of the art methods tested on the same
200 BSDS training images used by us. The performance of
our method on this same dataset can be compared using GCE
scores for [6] which also uses randomized hashing.

Figure 3: Top row: Histology images with the respective sets of seeds used
by RW marked on the images. Middle row: ground truth images provided by
experts. Bottom row: segmented outputs using our method.

Figure 4: Results of our method demonstrated on some natural images from
BSDS500 and a texture image from the UTIA-PR dataset (last). Using the
available ground truth, the cluster purity for the images from left to right are
96.61% , 96.49%, 88.92% and 98.29% respectively.

V. CONCLUSION

The segmentation performance of our unsupervised method
on various datasets is presented in Table I. It demonstrates that
smaller R also led to high cluster purity which meant savings
in computation time. GCE score was used to compare results
on the BSDSubset with other methods and it was found that
our method performed better than state of the art methods (see
BSDSubset column in Table II and Table III) and Taylor’s
randomized hashing method[6]. Additionally, we found that
our method gives encouraging results on histology images of
teratomas.

Method GCE

Human Segmentation 0.080

RAD[14] 0.205

seed[15] 0.209

Learned Affinity[16] 0.214

Mean Shift[17] 0.260

Normalized Cuts[18] 0.336

Table III: Comparison of segmentation performance for BSDSubset using
Global Consistency Error scores for state of the art methods. Reproduced
from [14].

Value of Accuracy(%)

R BSDSubset TexBTF TexColor TexGeo

10 91.57 ± 4.47 97.84 ± 1.63 94.00 ± 2.81 95.60 ± 2.39

20 91.58 ± 4.31 98.25 ± 1.15 94.55 ± 2.04 95.82 ± 1.71

40 91.42 ± 4.57 98.36 ± 0.78 94.09 ± 2.57 95.14 ± 2.97

Table I: Comparison of segmentation performance on various datasets while
varying the number of pairs of points R used for random projection. BSDSub-
set refers to 200 training images in the BSDS500 dataset. TexBTF contains
10 images which are a mosaic of bi-directional function textures. TexColor
contains 20 mosaics of various color images. TexGeo contains 10 mosaics
of satellite images. Smaller R implies smaller computation time and as seen
here, cluster purity is not affected adversely.

Value of GCE

R BSDSubset TexBTF TexColor TexGeo

10 0.179 0.063 0.159 0.102

20 0.180 0.065 0.159 0.129

40 0.186 0.061 0.156 0.134

Table II: GCE scores for varying values of R over all test datasets. GCE
scores for the BSDSubset of 200 images can be compared with those of other
methods (Table III) and with the randomized hashing method in [6] tested on
the same dataset.

H&E teratoma images [11], [12] are analyzed by
histopathologists to assess the tissue composition of the ter-
atoma. This visual analysis is extremely time consuming and
resource intensive. The multiple types of tissues within the
teratoma do not show regular relationships between each other,
making automated analysis challenging. It is to be noted that
the ground truth provided by the histopathology expert does
not always include each and every tissue component, but only
the ones deemed important enough. Examples of segmentation
outputs of histology images are as seen in Fig. 3. The low
GCE scores indicate accurate segmentation and our method
has been able to identify similar tissue regions. The lattice
connectivity for histology images was chosen to be radial with
r = 2. Large images were downsampled by a factor of 4 to
speed up computation. This segmentation result can be used
as a preprocessing step for robust tissue classification on H&E
images, as in [11], [12].

For natural and texture images, we use an 8-connected
lattice to form the graph. Downsampling is not required for
these images. Some example results are shown in Fig. 4. We
also tested performance for varying R on the training set
from the BSDS500 dataset [10] containing 200 images and
3 texture datasets provided by UTIA-PR [13]. These texture
datasets contain images which are computer-generated mosaics
filled with randomly selected textures taken from the UTIA-
PR dataset. Table I gives the values for cluster purity averaged
over the dataset. GCE scores for the test datasets are given in
Table II. These results are encouraging since they imply that
our segmentations and the ground truth show a high match.

Finally, we reproduce the table from [14] containing GCE
scores for several state of the art methods tested on the same
200 BSDS training images used by us. The performance of
our method on this same dataset can be compared using GCE
scores for [6] which also uses randomized hashing.

Figure 3: Top row: Histology images with the respective sets of seeds used
by RW marked on the images. Middle row: ground truth images provided by
experts. Bottom row: segmented outputs using our method.

Figure 4: Results of our method demonstrated on some natural images from
BSDS500 and a texture image from the UTIA-PR dataset (last). Using the
available ground truth, the cluster purity for the images from left to right are
96.61% , 96.49%, 88.92% and 98.29% respectively.

V. CONCLUSION

The segmentation performance of our unsupervised method
on various datasets is presented in Table I. It demonstrates that
smaller R also led to high cluster purity which meant savings
in computation time. GCE score was used to compare results
on the BSDSubset with other methods and it was found that
our method performed better than state of the art methods (see
BSDSubset column in Table II and Table III) and Taylor’s
randomized hashing method[6]. Additionally, we found that
our method gives encouraging results on histology images of
teratomas.

Method GCE

Human Segmentation 0.080

RAD[14] 0.205

seed[15] 0.209

Learned Affinity[16] 0.214

Mean Shift[17] 0.260

Normalized Cuts[18] 0.336

Table III: Comparison of segmentation performance for BSDSubset using
Global Consistency Error scores for state of the art methods. Reproduced
from [14].
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Value of Accuracy(%)

R BSDSubset TexBTF TexColor TexGeo

10 91.57 ± 4.47 97.84 ± 1.63 94.00 ± 2.81 95.60 ± 2.39

20 91.58 ± 4.31 98.25 ± 1.15 94.55 ± 2.04 95.82 ± 1.71

40 91.42 ± 4.57 98.36 ± 0.78 94.09 ± 2.57 95.14 ± 2.97

Table I: Comparison of segmentation performance on various datasets while
varying the number of pairs of points R used for random projection. BSDSub-
set refers to 200 training images in the BSDS500 dataset. TexBTF contains
10 images which are a mosaic of bi-directional function textures. TexColor
contains 20 mosaics of various color images. TexGeo contains 10 mosaics
of satellite images. Smaller R implies smaller computation time and as seen
here, cluster purity is not affected adversely.

Value of GCE

R BSDSubset TexBTF TexColor TexGeo

10 0.179 0.063 0.159 0.102

20 0.180 0.065 0.159 0.129

40 0.186 0.061 0.156 0.134

Table II: GCE scores for varying values of R over all test datasets. GCE
scores for the BSDSubset of 200 images can be compared with those of other
methods (Table III) and with the randomized hashing method in [6] tested on
the same dataset.

H&E teratoma images [11], [12] are analyzed by
histopathologists to assess the tissue composition of the ter-
atoma. This visual analysis is extremely time consuming and
resource intensive. The multiple types of tissues within the
teratoma do not show regular relationships between each other,
making automated analysis challenging. It is to be noted that
the ground truth provided by the histopathology expert does
not always include each and every tissue component, but only
the ones deemed important enough. Examples of segmentation
outputs of histology images are as seen in Fig. 3. The low
GCE scores indicate accurate segmentation and our method
has been able to identify similar tissue regions. The lattice
connectivity for histology images was chosen to be radial with
r = 2. Large images were downsampled by a factor of 4 to
speed up computation. This segmentation result can be used
as a preprocessing step for robust tissue classification on H&E
images, as in [11], [12].

For natural and texture images, we use an 8-connected
lattice to form the graph. Downsampling is not required for
these images. Some example results are shown in Fig. 4. We
also tested performance for varying R on the training set
from the BSDS500 dataset [10] containing 200 images and
3 texture datasets provided by UTIA-PR [13]. These texture
datasets contain images which are computer-generated mosaics
filled with randomly selected textures taken from the UTIA-
PR dataset. Table I gives the values for cluster purity averaged
over the dataset. GCE scores for the test datasets are given in
Table II. These results are encouraging since they imply that
our segmentations and the ground truth show a high match.

Finally, we reproduce the table from [14] containing GCE
scores for several state of the art methods tested on the same
200 BSDS training images used by us. The performance of
our method on this same dataset can be compared using GCE
scores for [6] which also uses randomized hashing.

Figure 3: Top row: Histology images with the respective sets of seeds used
by RW marked on the images. Middle row: ground truth images provided by
experts. Bottom row: segmented outputs using our method.

Figure 4: Results of our method demonstrated on some natural images from
BSDS500 and a texture image from the UTIA-PR dataset (last). Using the
available ground truth, the cluster purity for the images from left to right are
96.61% , 96.49%, 88.92% and 98.29% respectively.

V. CONCLUSION

The segmentation performance of our unsupervised method
on various datasets is presented in Table I. It demonstrates that
smaller R also led to high cluster purity which meant savings
in computation time. GCE score was used to compare results
on the BSDSubset with other methods and it was found that
our method performed better than state of the art methods (see
BSDSubset column in Table II and Table III) and Taylor’s
randomized hashing method[6]. Additionally, we found that
our method gives encouraging results on histology images of
teratomas.

Method GCE

Human Segmentation 0.080

RAD[14] 0.205

seed[15] 0.209

Learned Affinity[16] 0.214

Mean Shift[17] 0.260

Normalized Cuts[18] 0.336

Table III: Comparison of segmentation performance for BSDSubset using
Global Consistency Error scores for state of the art methods. Reproduced
from [14].
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Experimental Results 

•  Comparison measure: Global Consistency 
Error (GCE)* 
–  Lower GCE indicates lower error 
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No. of 
features 

       GCE Score 

BSDSubset TexBTF TexColor TexGeo 

10 0.179 0.063 0.159 0.102 

20 0.180 0.065 0.159 0.129 

40 0.186 0.061 0.156 0.134 



Experimental Results 

•  Comparison measure: Global Consistency 
Error (GCE) 
–  Lower GCE indicates lower error 

•  Comparison with other methods**: 
–  Performed on BSDS Subset 
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No. of 
features 

       GCE Score 

BSDSubset TexBTF TexColor TexGeo 

10 0.179 0.063 0.159 0.102 

20 0.180 0.065 0.159 0.129 

40 0.186 0.061 0.156 0.134 

Method Human RAD Seed Learned Affinity Mean Shift Normalized cuts 

GCE 0.080 0.205 0.209 0.214 0.260 0.336 

**E. Vazquez, J. Van De Weijer, and R. Baldrich, “Image segmentation in the presence of shadows and highlights,” 
pp. 1–14, Springer, 2008.  
 



Conclusions 

•  Comparative reasoning and Winner Take All 
hash enables fast similarity search 

•  Our method performs unsupervised 
segmentation using context (Random 
Walks-based clustering) 

•  There is no need to predefine the number of 
classes 

•  This can be used as a pre-processing step 
for classification of hyperspectral images, 
biomedical images etc. 
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