Unsupervised Image Segmentation Using Comparative Reasoning and Random Walks

Anuva Kulkarni Filipe Condessa Jelena Kovacevic

Carnegie Mellon University Carnegie Mellon, IST-University of Lisbon Carnegie Mellon University

Outline

• Motivation

- Training-free methods
- Comparative Reasoning
- Related work
- Approach
 - Winner Take All (WTA) Hash
 - Clustering based on Random Walks
- Some experimental results

Acknowledgements

- Example and test images taken from
 - Berkeley Segmentation Dataset (BSDS)
 - The Prague Texture Segmentation Data Generator and Benchmark

Motivation

- Goals:
 - Segment images where no. of classes unknown

- Eliminate training data (may not be available)
- Fast pre-processing step for classification
- Segmentation is similarity search
- Comparative Reasoning is rank correlation using machine learning concept of "hashing"

Hashing

- Used to speed up the searching process
- A 'hash function' relates the data values to keys or 'hash codes'

• Hash table is shortened representation of data

Hash	table

Hash value	Data	
001	Bird_type1	
010	Bird_type2	
011	Dog_type1	
100	Fox_type1	

Hashing

 Similar data points have the same (or close by) hash keys or "hash codes"

- Properties of hash functions
 - Always returns a number for an object
 - Two equal objects will always have the same number
 - Two unequal objects may not always have different numbers

Hashing for Segmentation

- Each pixel is described by some feature vectors (*eg.* Color)
- Hashing is used to cluster them into groups

Segmentation and Randomized Hashing

 Random hashing i.e using a hash code to indicate the region in which a feature vector lies after splitting the space using a set of randomly chosen splitting planes

Winner Take All (WTA) Hash

- A way to convert feature vectors into compact binary hash codes
- Absolute value of feature does not matter, only the ordering of values matters
- Rank correlation preserved
 - Stability
- Distance between hashes approximates rank correlation

J. Yagnik, D. Strelow, D. A. Ross, and R.s. Lin, "The power of comparative reasoning," in *ICCV 2011,* pp. 2431–2438, IEEE, 2011.

• Consider 3 feature vectors Step 1: Create random permutations

• Step 2: Choose first K entries. Let K=3

• Step 3: Pick the index of the max. entry. This is the hash code 'h' of that feature vector

Notice that Feature 2 is just Feature 1 perturbed by one, but Feature 3 is very different

Random Walks

- Understanding proximity in graphs
- Useful in **propagation** in graphs creates probability maps
- Similar to electrical network with voltages and resistances
- It is supervised.
 User must specify seeds

Our Approach

Block I: Similarity Search

WTA hash

- Image Dimensions: $P \ge Q \ge d$
- Project onto R randomly chosen hyperplanes
 - Each point in image has R feature vectors

WTA hash

• Run WTA hash *N* times.

Hence possible values of hash codes are 00, 01, 11

Repeat this N times to get PQ x N matrix of hash codes

Block II: Create Graph

Create Graph

- Run WTA hash N times → each point has N hash codes
- Image transformed into lattice
- Calculate edge weight between nodes *i* and *j*

$$\omega_{i,j} = \exp(-\beta \nu_{i,j})$$

where:

$$\begin{split} \nu_{i,j} &= \frac{d_H(i,j)}{\gamma} \\ d_H(i,j) &= \text{Avg. Hamm. distance over all } N \text{ hash codes of } i \text{ and } j \\ \gamma &= \text{Scaling factor} \\ \beta &= \text{Weight parameter for the RW algorithm} \end{split}$$

Block III: RW Algorithm

Seed Selection

- Needs initial seeds to be defined
- Unsupervised draws using Dirichlet processes
- DP(G₀,a)
 - G_o is base distribution
 - a is discovery parameter
- Larger a leads to discovery of more classes

Seed Selection

- Probability that a new seed belongs to a new class is proportional to a
- Probability for the i^{th} sample with class label y_i

- Result by Blackwell and MacQueen, 1973

$$p(y_i = c | \mathbf{y}_{-i}, \alpha) = \frac{n_c^{-i} + \frac{\alpha}{C_{tot}}}{n - 1 + \alpha}$$

where:

 $C_{tot} = \text{Total number of classes}$ $y_i = \text{Class label } c, c \in \{1, 2...C_{tot}\}$ $\mathbf{y}_{-i} = \{y_j | j \neq i\}$ $n_c^{-i} = \text{number of samples in } c\text{th class excluding } i\text{th sample}$

Seed Selection

- Unsupervised, hence C_{tot} is infinite. Hence, $\lim_{C_{tot}\to\infty} p(y_i = c | \mathbf{y}_{-i}, \alpha) = \frac{n_c^{-i}}{n - 1 + \alpha} \quad \forall c, n_c^{-i} > 0$
- "Clustering effect" or "rich gets richer"

Class is non-empty

• Probability that a new class is discovered:

$$\lim_{C_{tot} \to \infty} p(y_i \neq y_j \text{ for all } j < i | \mathbf{y}_{-\mathbf{i}}, \alpha) = \frac{\alpha}{n - 1 + \alpha} \quad \forall c, n_c^{-i} = 0$$

$$(C_{tot} \to \infty) \quad \forall c, n_c^{-i} = 0$$

$$(C_{tot} \to \infty) \quad (C_{tot} \to \infty) \quad (C_{tot} \to \infty) \quad (C_{tot} \to \infty)$$

Random Walks

• Use the RW algorithm to generate probability maps in each iteration

- Entropy calculated with probability maps
- Entropy-based stopping criteria
 - Cluster purity 🛧, Avg. image entropy 🗸

Histology images

GCE=0.169

GCE=0.329

26

TexGeo Avg GCE of dataset = 0.134

- Comparison measure: Global Consistency Error (GCE)*
 - Lower GCE indicates lower error

No. of features	GCE Score			
	BSDSubset	TexBTF	TexColor	TexGeo
10	0.179	0.063	0.159	0.102
20	0.180	0.065	0.159	0.129
40	0.186	0.061	0.156	0.134

*C. Fowlkes, D. Martin, and J. Malik, "Learning affinity functions for image segmentation: Combining patch-based and gradient-based approaches," vol. 2, pp. II–54, IEEE, 2003.

- Comparison measure: Global Consistency Error (GCE)
 - Lower GCE indicates lower error

No. of features	GCE Score			
	BSDSubset	TexBTF	TexColor	TexGeo
10	0.179	0.063	0.159	0.102
20	0.180	0.065	0.159	0.129
40	0.186	0.061	0.156	0.134

• Comparison with other methods**:

Performed on BSDS Subset

Method	Human	RAD	Seed	Learned Affinity	Mean Shift	Normalized cuts
GCE	0.080	0.205	0.209	0.214	0.260	0.336

**E. Vazquez, J. Van De Weijer, and R. Baldrich, "Image segmentation in the presence of shadows and highlights," 29 pp. 1–14, Springer, 2008.

Conclusions

- Comparative reasoning and Winner Take All hash enables fast similarity search
- Our method performs unsupervised segmentation using context (Random Walks-based clustering)
- There is no need to predefine the number of classes
- This can be used as a **pre-processing step** for classification of hyperspectral images, biomedical images etc.

Thank you