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1. Towards an understanding of DCNNs
• Since AlexNet (Krizhevsky et al, [1]) in 2012, Deep Convolutional Neural Networks
(DCNNs) have been the state of the art for many tasks in computer vision.

• The activation pathway of data through a DCNN is the pattern of nonzero node
outputs at every layer. It indicates how a DCNN matches data to its own internal
representations and hence how it makes decisions, e.g., for tasks like classification.

• Much experimental work has been done to understand and visualise these activations
(e.g., [5] and [7]), but a thorough theoretical understanding is lacking.

Visualisation dislaying the image patterns that activate given neurons - Wei et al [6]

2. Convolutional Sparse Coding
• The Convolutional Sparse Coding model (CSC), proposed by Papyan and Sulam
[3] allows us to connect CNNs with sparse coding. In the CSC model the global
dictionary is created by shifting a local dictionary across different spatial locations.

• The mutual coherence, µ, of the global CSC dictionary is high due to a) the small
support of the local atoms and b) the large inner product between any atom and its
shifted versions. This makes recovery of the support challenging.

• Papyan and Sulam where able to partially alleviate this issue by introducing a local
sparsity measure, proving guarantees for recovery based upon local "stripe sparsity"
instead of global sparsity.

• This model has interesting connections with DCNNs - indeed the forward pass across
a single layer of a DCNN can be viewed as solving a CSC problem.

CSC model - Papyan et al [3]

3. Interpreting the forward pass as approximatly solving a sequence of sparse coding problems
Here we build on the work of Papyan et al, investigating the role of the forward pass algorithm and its ability to recover the reverse activation pathway for data belonging to the Deep
Convolutional Sparse Coding model (D-CSC) [2]. The D-CSC model interprets the forward pass of a ReLU activated DCNN as approximatly solving a sequence of Convolutional Sparse
Coding (CSC) problems.

D-CSC Model as proposed by Papyan et al in [2]

• The reverse pass creates a set of representations
of X(L) by applying a sequence of filter convolu-
tions. These can be expressed as convolutional
matrices of the form A(l)D(l).

• In the forward pass we seek to recover these
representations from the noisy measurement X̂
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• The activations in the presence of noise are es-
timated recursively from the data matrix X̂
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according to
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• In a standard DCNN the projection operator is
typically a ReLU - however to allow us to conduct
our analysis, which relies on random filter signs
at each layer, we deploy a Hard Thresholding
(HT) function.

4. Pior Art - Uniform bounds
For signals consistent with the D-CSC model with D(l) = I ∀l then under worst case
assumptions, if ‖X(l)‖Q

(l)

0,∞ ≤ Sl and ‖V
(l)‖P (l)

2,∞ ≤ ζl for some {Sl}Ll=1 and {ζl}Ll=1, then so
long as

Sl <
µ(l))−1

|X(l)
max|

(
1

2
|X(l)

min| − ζl
)

+
1

2
(2)

the activation of X̂
(l)

is exactly the same as the activation of X(l). Notable in the sparsity
bound (2) is the proportionality to µ−1l [2]. This will typically be small for convolutional
matrices thereby limiting the complexity of signals guaranteed to be recovered.

5. Contribution - probabilistic bounds
Our extension follows from incorporating the prior work on one step thresholding by
Schnass and Vandergheynst [4] into an appropriately modified D-CSC model. We introduce
D(l), a diagonal matrix whose diagonal entries are independent Rademacher random
variables, at each layer which applies a random sign pattern to the columns of A(l).

Theorem: Let X̂
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be consistent with the D-CSC model, with ‖V(l)‖P (l)

2,∞ ≤ ζl and
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0,∞ ≤ Sl for all l = 0, . . . , L−1. Furthermore assume that D(l) is a random diagonal
matrix with independent Rademacher random variables on the diagonal entries, drawn
independent of the dictionaries A(l). Finally suppose the estimate at each layer is as in (1)
and denote as ZL the event that the activation path is successfully recovered. Then
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A key implication is that the derived probability bound scales proportional to µ−2l across
a given layer, rather than µ−1l . To be precise, for a given representation x̂(l−1) and an
arbitrary δ ∈ [0, 1], then assuming the support is recovered at layer l − 1, and denote Wl

as the event that the support is recovered at layer l. P (W̄l) ≤ δ if
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