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Introduction

I Tagging facial regions with person ID in images and videos is
useful for archival/search but time consuming when done
manually.

I One approach that can be used is label propagation:
I Manual labeling of faces with person ID in specific video

frames or images
I Spreading the labels from the (small) labeled facial image

dataset to the unlabeled images.
I Semi-supervised classification approach
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Label Propagation Example

Figure: Propagate the labels from the manually labelled images (in
rectangles) to the remaining ones.
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Overview

I Goal:
Enhance classification performance (labeling accuracy) of the
Multiple-graph Locality Preserving Projections – Cluster based
Label Propagation (MLPP-CLP) technique (Zoidi et al 1 ), when
applied on facial images derived from stereo videos,

I How:
Incorporate pairwise facial image similarity and dissimilarity
constraints into the objective function of MLPP-CLP.

1O Zoidi, A Tefas, N Nikolaidis, and I Pitas, “Person identity label propagation in
stereo videos,” IEEE Transactions on Multimedia, vol.16, no. issue 5, pp. 1358–1368,
2014.
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MLPP-CLP : Short Description

I Facial images are extracted by applying face detection and
tracking in the left/ right view of a stereo video.

I Facial image trajectories are derived: sequences of facial images
representing a tracked face over time.

I Each such facial trajectory is represented by one image (short
trajectories) or more images (longer trajectories).
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MLPP-CLP : Short Description

Inputs:
I Set of labeled facial images: XL = {xi}ml

i=1

I Set of persons names (labels): L = {lj}Q
j=1

I Set of unlabeled data: XU = {xi}mu
i=1

I Set of labeled and unlabeled facial images:
X = {x1, ...,xml ,xml+1, ...,xM},M = ml + mu

Objective: spread the labels in L from the set of labeled data XL to the
set of unlabeled data XU .
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MLPP-CLP : Short Description

I MLPP-CLP: Extension of the Zhou et al2 approach to data with
multiple representations

I Facial images in stereoscopic video: K =2 data representations,
left/right channel

I Build facial images similarity matrix W using heat kernel

I Wij = e−
‖xi−xj‖2

σ , i 6= j ,xi ,xj are k-NN
I W represents the corresponding similarity graph (nodes=images)

2D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B. Scholkopf, “Learning with local
and global consistency,” NIPS 2004.
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MLPP-CLP : Short Description

I Build matrix Y containing information regarding the labels in
labeled data set XL :

Yij =

{
1, if image i is labeled as yi = j
0, otherwise.

I Label Inference: Assign a score for every label to each facial
image through matrix F:

F = [fT
1 , ..., f

T
M ]T ∈ RM×Q

I Fij : score for j-th label in i-th image
I Q: number of labels, M: number of images
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MLPP-CLP : Short Description

I F is found by solving a minimization problem which leads to the
following solution:

F = (1− a)(I− aS)−1Y,

I S = D−1/2WD−1/2

I Dii =
∑

j Wij degree matrix
I Label yi for i-th image: yi = arg max

j∈1,...,Q
[fi1, . . . , fij , . . . , fiQ]

I Image is assigned the label with the highest score
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MLPP-CLP : Short Description

I MLPP-CLP extends this approach to data with multiple
representations,

I A separate graph is constructed for each of the K facial image
representations

I K = 2 for stereoscopic images: left / right view.
I Each graph is represented by the corresponding similarity matrix

Wk , k = 1, ...,K
I The regularization framework takes the form:

Q(F, τ) =
1
2

K∑
k=1

τk tr(FT Lk F) + µtr((F− Y)T (F− Y)),

I Lk = Dk −Wk : graph Laplacian for the k -th data representation.
I τk , k = 1,...,K : weight for the k -th data representation
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MLPP-CLP : Short Description

I This leads to the following solution for F:
I F = (1− a) (I− a

∑
k τk Sk )

−1 Y
I Sk = D−1/2Wk D−1/2

I MLPP also performs dimensionality reduction by extending
Locality Preserving Projections (LPP) method3 to a
multiple-graph framework

I A single projection matrix A is constructed for all data
representations, while preserving locality information and
similarity/dissimilarity constraints.

3X. He, P. Niyogi, "Locality Preserving Projections", NIPS 2003
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Proposed method: Constrained MLPP-CLP

I Proposed Constrained MLPP-CLP (CMLPP-CLP) approach
incorporates pairwise image similarity and dissimilarity
constraints in the MLPP-CLP objective function.
I Similar images shall be assigned the same label:

I S: set of similar facial image pairs:

S = {(i , j)|xi ,xj must have the same label}

I S contains facial images belonging to the same facial
image trajectory

I They depict the same actor
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Proposed method: Constrained MLPP-CLP

I Dissimilar images shall be assigned different labels:
I D: set of dissimilar pairs:

D = {(i , j)|xi ,xj must have di�erent labels}

I D includes facial image pairs that appear on the same
frame

I They belong to different actors.
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Proposed method: Constrained MLPP-CLP

I Two weight matrices Ws, Wd are constructed:

Ws,ij =

{
1, if (i , j) ∈ S
0, otherwise,

Wd,ij =

{
1, if (i , j) ∈ D
0, otherwise.
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Proposed method: Constrained MLPP-CLP

I Similarity and dissimilarity information is propagated to
neighboring nodes according to an iterative procedure that
converges to the steady state solution:

Fs = (1− α)(I− αP)−1Ws

Fd = (1− α)(I− αP)−1Wd .

I P ∈ <M×M : sparse neighborhood probability matrix:

Pij =

{ 1
|Ni | if j ∈ Ni

0, otherwise,

I Ni : neighborhood of node i

|



15

Proposed method: Constrained MLPP-CLP

I Then dimensionality reduction is performed through MLPP.
I Label propagation is conducted on the data projections, by

incorporating the pairwise similarity and dissimilarity constraints
to the label propagation objective function:

Q(F) =
1
2

tr(FT

(
K∑

k=1

τk Lk + βLs − γLd

)
F)+

µtr((F− Y)T (F− Y))

I Ls = Ds − Fs, Ld = Dd − Fd : graph Laplacians of the similarity
and dissimilarity constrains.
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Proposed method: Constrained MLPP-CLP

I Minimization of Q(F) leads to the following solution for F:

F = µ

(
aI +

K∑
k=1

τk Lk + βLs − γLd

)−1

Y.
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Experimental evaluation

I Dataset:
I 3 stereo movies
I Duration: 2 hours each
I Facial images per movie: 5300, 3500, 5000 (after retaining

one/more image(s) per facial trajectory)
I Actors (classes) per movie: 26, 44, 58.

I 5% of the facial images were manually labeled.
I Dimensionality reduction down to 75 dimensions
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Experimental evaluation

MLPP-CLP CMLPP-CLP
Movie 1 0.7859 0.801223
Movie 2 0.6395 0.672213
Movie 3 0.62 0.710133

Classification accuracy obtained using MLPP-CLP and Constrained
MLPP-CLP (CMLPP-CLP).

I Incorporation of pairwise constraints into the objective function of
label propagation increases the classification accuracy by 4.6%
on average.

I Recent experiments showed that CMLPP-CLP outperforms both
older and recent approaches

I OMNI-Prop, Yamaguchi et al., AAAI 2015
I CAMLP, Yamaguchi et al., SIAM Int. Conf. on Data Mining, 2016
I MLAN, Nie et al, AAAI 2017
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Choice of ”constraints vs labels” strategy

I A human annotator can perform two different actions towards
reaching a desired classification accuracy:
I Manually label additional unlabeled images or
I Place additional pairwise facial image similarity or

dissimilarity constraints
I Experiments were conducted in order to answer the following

questions:
I What is the effect of inserting one or more constraints or

labeling one or more images?
I Which of the two actions is more beneficial?
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Choice of ”constraints vs labels” strategy

I NRL: current number of manually labeled images
I NTL: number of manually labeled images required in order to

reach the desired classification accuracy P (without using
pairwise constraints)
I Nc : number of pairwise similarity constraints needed (in

addition to the NRL labeled images) in order to reach P
I Ratio r of additional labeled images over additional

constraints for achieving desired classification accuracy:

r = (NTL − NRL)/Nc

I Small r (below 1): more constraints than labels are needed in
order to reach the desired accuracy P
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Choice of ”constraints vs labels” strategy

Figure: r versus NRL for various values of NTL (desired accuracy P).
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Choice of ”constraints vs labels” strategy

I r is in most cases significantly below 1:
I Less labeled images than labeling constraints are neededto

reach the desired accuracy
I Labeled images carry more information than constraints.

I However, the effort of labeling an image is larger than that of
assigning a pairwise labeling constraint.
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Conclusions

I A novel method (CMLPP-CLP) for propagating person identity
labels on facial images extracted from stereo videos was
introduced.

I It incorporates similarity and dissimilarity labelling constraints in
order to increase the classification accuracy

I The proposed method outperforms current methods.
I It can be used to perform label propagation in other types of

images or data in general.
I It can be easily adapted to work with images taken from

monocular cameras.
I An investigation of labels vs constraints strategy that should be

followed in order to reach a desired accuracy was also
conducted.
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Conclusions
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Thank you for your attention!
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